Logika i teoria mnogości: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Kubakozik (dyskusja | edycje)
Linia 63: Linia 63:
# [[Logika i teoria mnogości/Wykład 3: Rachunek predykatów, przykład teorii w rachunku predykatów|Rachunek predykatów, przykład teorii w rachunku predykatów]]  
# [[Logika i teoria mnogości/Wykład 3: Rachunek predykatów, przykład teorii w rachunku predykatów|Rachunek predykatów, przykład teorii w rachunku predykatów]]  
# [[Logika i teoria mnogości/Wykład 4: Teoria mnogości ZFC. Operacje na zbiorach|Teoria mnogości ZFC. Operacje na zbiorach]]  
# [[Logika i teoria mnogości/Wykład 4: Teoria mnogości ZFC. Operacje na zbiorach|Teoria mnogości ZFC. Operacje na zbiorach]]  
# [[Logika i teoria mnogości/Wykład 5: Para uporządkowana, iloczyn kartezjański, relacje, domykanie relacji, relacja równoważności, rozkłady zbiorów|Para uporządkowana, iloczyn kartezjański, relacje, domykanie relacji, relacja równoważności, rozkłady zbiorów]]  
# Iloczyn kartezjański i relacje
## [[Logika i teoria mnogości/Wykład 5: Para uporządkowana, iloczyn kartezjański, relacje, domykanie relacji, relacja równoważności, rozkłady zbiorów|Para uporządkowana, iloczyn kartezjański, relacje, domykanie relacji, relacja równoważności, rozkłady zbiorów]]
##[[Logika i teoria mnogości/Wykład 5.2| Iloczyn kartezjański i aksjomat wyróżniania (dla dociekliwych)]]  
# [[Logika i teoria mnogości/Wykład 6: Funkcje, tw. o faktoryzacji, produkt uogólniony, obrazy i przeciwobrazy, tw. Knastera-Tarskiego i lemat Banacha|Funkcje, tw. o faktoryzacji, produkt uogólniony, obrazy i przeciwobrazy, tw. Knastera-Tarskiego i lemat Banacha]]  
# [[Logika i teoria mnogości/Wykład 6: Funkcje, tw. o faktoryzacji, produkt uogólniony, obrazy i przeciwobrazy, tw. Knastera-Tarskiego i lemat Banacha|Funkcje, tw. o faktoryzacji, produkt uogólniony, obrazy i przeciwobrazy, tw. Knastera-Tarskiego i lemat Banacha]]  
# [[Logika i teoria mnogości/Wykład 7: Konstrukcja von Neumanna liczb naturalnych, twierdzenie o indukcji, zasady minimum, maksimum, definiowanie przez indukcje|Konstrukcja von Neumanna liczb naturalnych, twierdzenie o indukcji, zasady minimum, maksimum, definiowanie przez indukcje]]  
# [[Logika i teoria mnogości/Wykład 7: Konstrukcja von Neumanna liczb naturalnych, twierdzenie o indukcji, zasady minimum, maksimum, definiowanie przez indukcje|Konstrukcja von Neumanna liczb naturalnych, twierdzenie o indukcji, zasady minimum, maksimum, definiowanie przez indukcje]]  

Wersja z 14:28, 16 wrz 2006

Forma zajęć

Wykład (30 godzin) + ćwiczenia (30 godzin)

Opis

Zapoznanie się z podstawowymi pojęciami i narzędziami matematyki. Wprowadzenie fundamentalnych obiektów matematycznych i opis ich własności.

Sylabus

Autorzy

  • Marek Zaionc - Uniwersytet Jagielloński, Wydział Matematyki i Informatyki,
  • Jakub Kozik - Uniwersytet Jagielloński, Wydział Matematyki i Informatyki,
  • Marcin Kozik - Uniwersytet Jagielloński, Wydział Matematyki i Informatyki,

Zawartość

  • Rachunek zdań i rachunek predykatów.
  • Aksjomatyka teorii mnogości ZFC.
  • Iloczyn kartezjański, relacje, relacja równoważności, rozkłady zbiorów.
  • Konstrukcja von Neumanna liczb naturalnych:
    • twierdzenie o indukcji,
    • własności liczb,
    • definiowanie przez indukcję,
    • zasada minimum,
    • zasada maksimum.
  • Konstrukcja i działania na liczbach całkowitych
  • Konstrukcja i działania na liczbach wymiernych.
  • Konstrukcja Cantora liczb rzeczywistych:
    • działania i porządek.
  • Funkcje, twierdzenie o faktoryzacji:
    • Obrazy i przeciwobrazy zbiorów.
  • Teoria mocy:
    • Zbiory przeliczalne i ich własności.
    • Zbiory liczb całkowitych i wymiernych są przeliczalne.
    • Zbiór liczb rzeczywistych jest nieprzeliczalny.
    • Zbiory {0,1}N i NN nie są przeliczalne. Zbiór 2NR
    • Twierdzenie Knastera - Tarskiego (dla zbiorów)
    • Lemat Banacha,
    • Twierdzenie Cantora-Bernsteina, (warunki równoważne),
    • Twierdzenie Cantora.
    • Zbiory mocy kontinuum.
  • Zbiory uporządkowane.
    • Lemat Kuratowskiego Zorna.
    • Przykłady dowodów przy pomocy lematu Kuratowskiego Zorna.
    • Dowód lemat Kuratowskiego Zorna
  • Zbiory liniowo uporządkowane.
    • Pojęcia gęstości i ciągłości.
    • Porządek na R jest ciągły.
  • Zbiory dobrze uporządkowane.
    • Twierdzenie o indukcji.
    • Liczby porządkowe.
    • Zbiory liczb porządkowych.
    • Twierdzenie o definiowaniu przez indukcje pozaskończoną
    • Twierdzenie Zermelo,

Literatura

  1. H. Rasiowa, Wstęp do matematyki, PWN, Warszawa 1971, 1984, 1998
  2. K. Kuratowski, A. Mostowski, Teoria mnogości, PWN, Warszawa, 1978
  3. W. Marek, J. Onyszkiewicz, Elementy logiki i teorii mnogosci w zadaniach, PWN, 1996.


Moduły

  1. Po co nam teoria mnogości? Naiwna teoria mnogości, naiwna indukcja, naiwne dowody niewprost
  2. Rachunek zdań
  3. Rachunek predykatów, przykład teorii w rachunku predykatów
  4. Teoria mnogości ZFC. Operacje na zbiorach
  5. Iloczyn kartezjański i relacje
    1. Para uporządkowana, iloczyn kartezjański, relacje, domykanie relacji, relacja równoważności, rozkłady zbiorów
    2. Iloczyn kartezjański i aksjomat wyróżniania (dla dociekliwych)
  6. Funkcje, tw. o faktoryzacji, produkt uogólniony, obrazy i przeciwobrazy, tw. Knastera-Tarskiego i lemat Banacha
  7. Konstrukcja von Neumanna liczb naturalnych, twierdzenie o indukcji, zasady minimum, maksimum, definiowanie przez indukcje
  8. Konstrukcje liczbowe, liczby całkowite, wymierne, konstrukcja Cantora liczb rzeczywistych: działania i porządek
  9. Teoria mocy twierdzenie Cantora-Bernsteina, twierdzenie Cantora. Zbiory przeliczalne, zbiory mocy kontinuum
  10. Zbiory uporządkowane. Zbiory liniowo uporządkowane. Pojęcia gęstości i ciągłości
  11. Zbiory dobrze uporządkowane. Lemat Kuratowskiego Zorna i twierdzenie Zermelo, przykłady
  12. Twierdzenie o indukcji. Liczby porządkowe. Zbiory liczb porządkowych. Twierdzenie o definiowaniu przez indukcje pozaskończoną