Analiza matematyczna 1/Ćwiczenia 7: Szeregi liczbowe. Kryteria zbieżności: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Linia 513: Linia 513:
mamy
mamy


<center><math>\forall n\in\mathbb{N}:\
<center><math>\displaystyle\forall n\in\mathbb{N}:\
\frac{1}{\ln n}
\frac{1}{\ln n}
\ \ge\
\ \ge\

Wersja z 11:35, 9 sie 2006

7. Szeregi liczbowe. Kryteria zbieżności

Ćwiczenie 7.1.

Zbadać zbieżność szeregów
(1) n=1(n2+1n2+n+1)n2
(2) n=1(n!)nnn2
(3) n=1(n+1n)n22n
(4) n=1en(n+1n)n2

Wskazówka
Rozwiązanie

Ćwiczenie 7.2.

Zbadać zbieżność szeregów
(1) n=1(n!)3(3n)!
(2) n=1(2n)!!(2n+1)(2n1)!!
(3) n=1enn!nn

Wskazówka
Rozwiązanie

Ćwiczenie 7.3.

Zbadać zbieżność szeregów
(1) n=1sin1ncos1n
(2) n=1sin21ncosn
(3) n=11ntg(sin1n)

Wskazówka
Rozwiązanie

Ćwiczenie 7.4.

Zbadać zbieżność szeregów oraz określić rodzaj zbieżności
(1) n=1(1)nlnn
(2) n=1cosnπn
(3) n=1cosnπ2n
(4) n=1(1)nlnnn

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Zbadać zbieżność szeregów:
(1) n=1cosnn
(2) n=1sinnn
(3) n=1(1)nsinn3n
(4) n=1(1)ncosnn2

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Niech n=1an będzie szeregiem liczbowym.
(1) Udowodnić, że jeśli szereg n=1an2 jest zbieżny, to szereg n=1ann jest bezwzględnie zbieżny.
(2) Pokazać, że nie zachodzi implikacja odwrotna w powyższym stwierdzeniu.

Wskazówka
Rozwiązanie