Analiza matematyczna 1/Ćwiczenia 4: Ciągi liczbowe: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Linia 372: Linia 372:
<math>\displaystyle \lim\limits_{n\rightarrow +\infty} \frac{1}{b_n}
<math>\displaystyle \lim\limits_{n\rightarrow +\infty} \frac{1}{b_n}
=\frac{1}{\lim\limits_{n\rightarrow +\infty} b_n}.</math>
=\frac{1}{\lim\limits_{n\rightarrow +\infty} b_n}.</math>
W tym celu skorzystać z Zadania [[##z.new.am1.c.04.0040|Uzupelnic z.new.am1.c.04.0040|]].
W tym celu skorzystać z [[#cwiczenie_4_4|zadania 4.4.]].
Następnie wykorzystać punkt (1).
Następnie wykorzystać punkt (1).
{}<math>\Box</math></div></div>
</div></div>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   

Wersja z 17:33, 3 sie 2006

Ćwiczenie 4.1.

Obliczyć następujące granice ciągów:
(1) limn+2n2+13n21
(2) limn+2n2+n+2nn
(3) limn+n+1n2+2.

Wskazówka
Rozwiązanie


Ćwiczenie 4.2.

Obliczyć następujące granice ciągów:
(1) limn+(n+2n)n2
(2) limn+(n+3n)n3.

Wskazówka
Rozwiązanie

Ćwiczenie 4.3.

Obliczyć następujące granice ciągów:
(1) limn+5n+1+1+6n+136n
(2) limn+2n+1+3n32n+2
(3) limn+1+14+116++14n1+13+19++13n.

Wskazówka
Rozwiązanie

Ćwiczenie 4.4.

Niech {xn} będzie ciągiem liczbowym takim, że limn+xn=g. Udowodnić, że jeśli g0 oraz xn0 dla dowolnego n, to ciąg {1xn} jest ograniczony oraz dodatkowo

m>0: |1xn|m.
Wskazówka
Rozwiązanie

Ćwiczenie 4.5.

Niech {an},{bn} będą ciągami liczbowymi zbieżnymi, Udowodnić następujące stwierdzenia:
(1) limn+(anbn)=(limn+an)(limn+bn);
(2) limn+anbn=limn+anlimn+bn (o ile bn0 dla n oraz limn+bn0).

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Niech {an},{bn} będą ciągami liczbowymi zbieżnymi. Udowodnić następujące stwierdzenia:
(1) limn+an=alimn+|an|=|a|;
(2) limn+an=0limn+|an|=0;

{black}

Wskazówka
Rozwiązanie