Analiza matematyczna 1/Ćwiczenia 4: Ciągi liczbowe: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu – „,↵</math>” na „</math>,” |
m Zastępowanie tekstu – „<math> ” na „<math>” |
||
Linia 250: | Linia 250: | ||
\lim\limits_{n\rightarrow +\infty}\frac{\frac{1-\frac{1}{4^{n+1}}}{1-\frac{1}{4}}}{\frac{1-\frac{1}{3^{n+1}}}{1-\frac{1}{3}}} | \lim\limits_{n\rightarrow +\infty}\frac{\frac{1-\frac{1}{4^{n+1}}}{1-\frac{1}{4}}}{\frac{1-\frac{1}{3^{n+1}}}{1-\frac{1}{3}}} | ||
=</math></center> | =</math></center> | ||
<center><math> | <center><math> | ||
\frac{9}{8}\cdot | \frac{9}{8}\cdot | ||
\lim\limits_{n\rightarrow +\infty}\frac{1-\overbrace{\bigg(\frac{1}{4}\bigg)^{n+1}}^{\rightarrow 0}}{1-\underbrace{\bigg(\frac{1}{3}\bigg)^{n+1}}_{\rightarrow 0}} | \lim\limits_{n\rightarrow +\infty}\frac{1-\overbrace{\bigg(\frac{1}{4}\bigg)^{n+1}}^{\rightarrow 0}}{1-\underbrace{\bigg(\frac{1}{3}\bigg)^{n+1}}_{\rightarrow 0}} |
Wersja z 22:17, 11 wrz 2023
4. Ciągi liczbowe
Ćwiczenie 4.1.
Obliczyć następujące granice ciągów:
(1)
,
(2)
,
(3)
.
Wskazówka
Rozwiązanie
Ćwiczenie 4.2.
Obliczyć następujące granice ciągów:
(1)
,
(2)
.
Wskazówka
Rozwiązanie
Ćwiczenie 4.3.
Obliczyć następujące granice ciągów:
(1)
,
(2)
,
(3)
.
Wskazówka
Rozwiązanie
Ćwiczenie 4.4.
Niech będzie ciągiem liczbowym takim, że . Udowodnić, że jeśli oraz dla dowolnego , to ciąg jest ograniczony oraz dodatkowo
Wskazówka
Rozwiązanie
Ćwiczenie 4.5.
Niech
będą ciągami liczbowymi zbieżnymi.
Udowodnić następujące stwierdzenia:
(1)
;
(2)
(o ile
dla oraz ).
Wskazówka
Rozwiązanie
Ćwiczenie 4.6.
Niech
będą ciągami liczbowymi zbieżnymi.
Udowodnić następujące stwierdzenia:
(1)
;
(2)
;
Wskazówka
Rozwiązanie