Analiza matematyczna 1/Ćwiczenia 4: Ciągi liczbowe: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu – „<math> ” na „<math>”
m Zastępowanie tekstu – „ </math>” na „</math>”
Linia 51: Linia 51:
</math></center>
</math></center>


przy czym <math>2\sqrt{n} \rightarrow +\infty </math>. Zbieżność  <math>\lim\limits_{n\rightarrow +\infty} \sqrt{n}=+\infty</math>
przy czym <math>2\sqrt{n} \rightarrow +\infty</math>. Zbieżność  <math>\lim\limits_{n\rightarrow +\infty} \sqrt{n}=+\infty</math>
łatwo pokazać z definicji granicy niewłaściwej.
łatwo pokazać z definicji granicy niewłaściwej.
Zatem korzystając z twierdzenia o dwóch ciągach
Zatem korzystając z twierdzenia o dwóch ciągach

Wersja z 10:50, 5 wrz 2023

4. Ciągi liczbowe

Ćwiczenie 4.1.

Obliczyć następujące granice ciągów:
(1) limn+2n2+13n21,
(2) limn+2n2+n+2nn,
(3) limn+n+1n2+2.

Wskazówka
Rozwiązanie


Ćwiczenie 4.2.

Obliczyć następujące granice ciągów:
(1) limn+(n+2n)n2,
(2) limn+(n+3n)n3.

Wskazówka
Rozwiązanie

Ćwiczenie 4.3.

Obliczyć następujące granice ciągów:
(1) limn+5n+1+1+6n+136n,
(2) limn+2n+1+3n32n+2,
(3) limn+1+14+116++14n1+13+19++13n.

Wskazówka
Rozwiązanie

Ćwiczenie 4.4.

Niech {xn} będzie ciągiem liczbowym takim, że limn+xn=g. Udowodnić, że jeśli g0 oraz xn0 dla dowolnego n, to ciąg {1xn} jest ograniczony oraz dodatkowo

m>0:|1xn|m
Wskazówka
Rozwiązanie

Ćwiczenie 4.5.

Niech {an},{bn} będą ciągami liczbowymi zbieżnymi. Udowodnić następujące stwierdzenia:
(1) limn+(anbn)=(limn+an)(limn+bn);
(2) limn+anbn=limn+anlimn+bn (o ile bn0 dla n oraz limn+bn0).

Wskazówka
Rozwiązanie

Ćwiczenie 4.6.

Niech {an},{bn} będą ciągami liczbowymi zbieżnymi. Udowodnić następujące stwierdzenia:
(1) limn+an=alimn+|an|=|a|;
(2) limn+an=0limn+|an|=0;

Wskazówka
Rozwiązanie