Programowanie funkcyjne/Procedury wyższych rzędów/Ćwiczenia: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Przemek (dyskusja | edycje)
Kubica (dyskusja | edycje)
Nie podano opisu zmian
Linia 1: Linia 1:
==Ćwiczenia==
==Ćwiczenia==


* Zapisz procedurę <tt>length</tt> za pomocą <tt>foldr</tt>.
* Zapisz procedurę <tt>append</tt> za pomocą <tt>foldr/foldl</tt>.
* Za pomocą <tt>foldl</tt> zapisz procedurę <tt>rev</tt>.
* suma listy funkcji,
* złożenie listy funkcji,
* Za pomocą <tt>map</tt> zapisz procedurę <tt>heads</tt>, której wynikiem dla danej listy list, jest lista pierwszych elementów list składowych.
* Za pomocą <tt>filter</tt> zaimplementuj procedurę <tt>not_divisivble</tt>, która pozostawia na liście wszystkie elementy niepodzielne przez zadaną liczbę.
* Wykorzystaj rozwiązanie poprzedniego zadania do zaimplementowania sita Eratostenesa.
* Za pomocą <tt>foldr</tt> zapisz <tt>flatten</tt>. (<tt>let flatten l = foldr (@) l [];;</tt>)
* Za pomocą <tt>foldl</tt> zapisz procedurę <tt>foldr</tt>.
* Dane są: definicja typu <tt>tree</tt> i procedura <tt>fold_tree</tt>:
* Dane są: definicja typu <tt>tree</tt> i procedura <tt>fold_tree</tt>:


Linia 25: Linia 15:
==Laboratorium==
==Laboratorium==


* Korzystając z <tt>filter</tt> zaimplementuj Quick-sort.
* Niech <math>f : \mathcal{R} \to \mathcal{R}</math> będzie funkcją 1-1 i "na" oraz taką, że <math>f(0) = 0</math>, <math>f</math> jest rosnąca i <math>|f(x)| \ge |x|</math>. Zaimplementuj procedurę <tt>odwrotność</tt>, której wynikiem dla parametru <math>f</math> będzie przybliżenie <math>f^{-1}</math> z dokładnością zadaną przez stałą <tt>epsilon</tt> (czyli jeśli <math>g = (\texttt{odwrotnosc} f)</math>, to <math>\forall x\ |g(x) - f^{-1}(x)| \le epsilon</math>).  
* Niech <math>f : \mathcal{R} \to \mathcal{R}</math> będzie funkcją 1-1 i "na" oraz taką, że <math>f(0) = 0</math>, <math>f</math> jest rosnąca i <math>|f(x)| \ge |x|</math>. Zaimplementuj procedurę <tt>odwrotność</tt>, której wynikiem dla parametru <math>f</math> będzie przybliżenie <math>f^{-1}</math> z dokładnością zadaną przez stałą <tt>epsilon</tt> (czyli jeśli <math>g = (\texttt{odwrotnosc} f)</math>, to <math>\forall x\ |g(x) - f^{-1}(x)| \le epsilon</math>).  
* Wygładzenie funkcji z odstępem <math>dx</math> polega na uśrednieniu <math>f(x - dx)</math>, <math>f(x)</math> i <math>f(x + dx)</math>. Napisz procedurę wygładzającą daną funkcję z zadanym odstępem.   
* Wygładzenie funkcji z odstępem <math>dx</math> polega na uśrednieniu <math>f(x - dx)</math>, <math>f(x)</math> i <math>f(x + dx)</math>. Napisz procedurę wygładzającą daną funkcję z zadanym odstępem.   
* Punktem stałym funkcji <math>y \to \frac{x}{y^{n-1}}</math> jest <math>\sqrt[n]{x}</math>. Zaimplementuj obliczanie <math>n</math>-tego pierwiastka z <math>x</math> za pomocą obliczania punktu stałego i tłumienia przez uśrednianie. Uwaga: ile razy należy stosować tłumienie w zależności od <math>n</math>?
* Punktem stałym funkcji <math>y \to \frac{x}{y^{n-1}}</math> jest <math>\sqrt[n]{x}</math>. Zaimplementuj obliczanie <math>n</math>-tego pierwiastka z <math>x</math> za pomocą obliczania punktu stałego i tłumienia przez uśrednianie. Uwaga: ile razy należy stosować tłumienie w zależności od <math>n</math>?
* Rozważmy następującą metodę kompresji ciągów liczb całkowitych:  Jeżeli w oryginalnym ciągu ta sama liczba powtarza się kilka razy z rzędu, to jej kolejne wystąpienia reprezentujemy za pomocą jednej tylko liczby. Konkretnie, <math>i</math> powtórzeń liczby <math>k</math> reprezentujemy w ciągu skompresowanym jako <math>2^{i-1} \cdot (2 \cdot k - 1)</math>. Napisz procedury: kompresującą i dekompresującą zadaną listę. Lista skompresowana powinna być oczywiście jak najkrótsza. Przy dekompresji możesz założyć, że lista skompresowana nie zawiera zer. Rozwiązując to zadanie, zamiast rekurencji, należy użyć  standardowych procedur wyższych rzędów przetwarzających listy.


kompresuj [1; 2; 2; 5; 11; 11; 2];;
''- : int list = [1; 6; 9; 42; 3]''


* Napisz odpowiedniki <tt>map</tt> i <tt>filter</tt> dla drzew. Rozważ drzewa binarne i drzewa o wierzchołkach dowolnego skończonego stopnia (por. ćw. do poprzedniego wykładu).
* Napisz odpowiedniki <tt>map</tt> i <tt>filter</tt> dla drzew. Rozważ drzewa binarne i drzewa o wierzchołkach dowolnego skończonego stopnia (por. ćw. do poprzedniego wykładu).

Wersja z 13:28, 22 sie 2006

Ćwiczenia

  • Dane są: definicja typu tree i procedura fold_tree:
type tree = Node of tree * int * tree | Leaf;;
let rec fold_tree f a t = 
  match t with
  Leaf -> a |
  Node (l, x, r) -> f x (fold_tree f a l) (fold_tree f a r);;

Powiemy, że liczba w węźle drzewa jest widoczna, jeżeli na ścieżce od tego węzła do korzenia drzewa nie ma większej liczby. W szczególności liczba w korzeniu drzewa jest zawsze widoczna, a liczby mniejsze od niej nie są nigdy widoczne.

  • Napisz procedurę widoczne:drzewo int, która dla zadanego drzewa (zawierającego wyłącznie liczby nieujemne) obliczy liczbę widocznych liczb. Rozwiązując to zadanie nie wolno Ci tworzyć żadnych definicji rekurencyjnych. Powinieneś natomiast skorzystać z procedury fold_tree.

Laboratorium

  • Niech f: będzie funkcją 1-1 i "na" oraz taką, że f(0)=0, f jest rosnąca i |f(x)||x|. Zaimplementuj procedurę odwrotność, której wynikiem dla parametru f będzie przybliżenie f1 z dokładnością zadaną przez stałą epsilon (czyli jeśli g=(odwrotnoscf), to x |g(x)f1(x)|epsilon).
  • Wygładzenie funkcji z odstępem dx polega na uśrednieniu f(xdx), f(x) i f(x+dx). Napisz procedurę wygładzającą daną funkcję z zadanym odstępem.
  • Punktem stałym funkcji yxyn1 jest xn. Zaimplementuj obliczanie n-tego pierwiastka z x za pomocą obliczania punktu stałego i tłumienia przez uśrednianie. Uwaga: ile razy należy stosować tłumienie w zależności od n?


  • Napisz odpowiedniki map i filter dla drzew. Rozważ drzewa binarne i drzewa o wierzchołkach dowolnego skończonego stopnia (por. ćw. do poprzedniego wykładu).