Analiza matematyczna 1/Ćwiczenia 4: Ciągi liczbowe: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Linia 183: Linia 183:
\lim\limits_{n\rightarrow +\infty}\frac{1+\frac{1}{4}+\frac{1}{16}+\ldots+\frac{1}{4^n}}{1+\frac{1}{3}+\frac{1}{9}+\ldots+\frac{1}{3^n}}.</math>
\lim\limits_{n\rightarrow +\infty}\frac{1+\frac{1}{4}+\frac{1}{16}+\ldots+\frac{1}{4^n}}{1+\frac{1}{3}+\frac{1}{9}+\ldots+\frac{1}{3^n}}.</math>
}}
}}
{black}


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">   
Linia 193: Linia 191:
i skorzystać z twierdzeń o arytmetyce granic.<br>
i skorzystać z twierdzeń o arytmetyce granic.<br>
'''(3)''' Wykorzystać wzór na sumę skończonego
'''(3)''' Wykorzystać wzór na sumę skończonego
ciągu geometrycznego (patrz Uwaga [[##u.1.0100|Uzupelnic u.1.0100|]]).
ciągu geometrycznego (patrz [[Analiza matematyczna 1/Wykład 1: Zbiory liczbowe#uwaga_1_10|uwaga 1.10.|]]).
{}<math>\Box</math></div></div>
</div></div>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   

Wersja z 17:08, 3 sie 2006

Ćwiczenie 4.1.

Obliczyć następujące granice ciągów:
(1) limn+2n2+13n21
(2) limn+2n2+n+2nn
(3) limn+n+1n2+2.

Wskazówka
Rozwiązanie


Ćwiczenie 4.2.

Obliczyć następujące granice ciągów:
(1) limn+(n+2n)n2
(2) limn+(n+3n)n3.

Wskazówka
Rozwiązanie

Ćwiczenie 4.3.

Obliczyć następujące granice ciągów:
(1) limn+5n+1+1+6n+136n
(2) limn+2n+1+3n32n+2
(3) limn+1+14+116++14n1+13+19++13n.

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Niech {xn} będzie ciągiem liczbowym takim, że limn+xn=g. Udowodnić, że jeśli g0 oraz xn0 dla dowolnego n, to ciąg {1xn} jest ograniczony oraz dodatkowo

m>0: |1xn|m.

{black}

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Niech {an},{bn} będą ciągami liczbowymi zbieżnymi, Udowodnić następujące stwierdzenia:
(1) limn+(anbn)=(limn+an)(limn+bn);
(2) limn+anbn=limn+anlimn+bn (o ile bn0 dla n oraz limn+bn0).

{black}

Wskazówka
Rozwiązanie

Ćwiczenie [Uzupelnij]

Niech {an},{bn} będą ciągami liczbowymi zbieżnymi. Udowodnić następujące stwierdzenia:
(1) limn+an=alimn+|an|=|a|;
(2) limn+an=0limn+|an|=0;

{black}

Wskazówka
Rozwiązanie