Programowanie funkcyjne/Procedury wyższych rzędów/Ćwiczenia: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Kubica (dyskusja | edycje)
Kubica (dyskusja | edycje)
Nie podano opisu zmian
Linia 10: Linia 10:
* Niech <math>f : \mathcal{R} \to \mathcal{R}</math> będzie funkcją 1-1 i "na" oraz taką, że <math>f(0) = 0</math>, <math>f</math> jest rosnąca i <math>|f(x)| \ge |x|</math>. Zaimplementuj procedurę <tt>odwrotnosc</tt>, której wynikiem dla parametru <math>f</math> będzie przybliżenie <math>f^{-1}</math> z dokładnością zadaną przez stałą <tt>epsilon</tt> (czyli jeśli <tt>g = odwrotnosc f</tt>, to <math>\forall x\ |g(x) - f^{-1}(x)| \le epsilon</math>).
* Niech <math>f : \mathcal{R} \to \mathcal{R}</math> będzie funkcją 1-1 i "na" oraz taką, że <math>f(0) = 0</math>, <math>f</math> jest rosnąca i <math>|f(x)| \ge |x|</math>. Zaimplementuj procedurę <tt>odwrotnosc</tt>, której wynikiem dla parametru <math>f</math> będzie przybliżenie <math>f^{-1}</math> z dokładnością zadaną przez stałą <tt>epsilon</tt> (czyli jeśli <tt>g = odwrotnosc f</tt>, to <math>\forall x\ |g(x) - f^{-1}(x)| \le epsilon</math>).
   
   
* [SIPK] Przedstawione w wykładzie tłumienie przez uśrednianie opiera się na średniej arytmetycznej. Czasami zamiast średniej arytmetycznej należy użyć średniej ważonej, z odpowiednio dobraną wagą. Punktem stałym funkcji <math>y \to \frac{x}{y^{n-1}}</math> jest <math>\sqrt[n]{x}</math>. Zaimplementuj obliczanie <math>n</math>-tego pierwiastka z <math>x</math> za pomocą obliczania punktu stałego i tłumienia przez uśrednianie z odpowiednimi wagami. Uwaga: W jaki sposób wagi zależą od <math>n</math>?
* [AS] Przedstawione w wykładzie tłumienie przez uśrednianie opiera się na średniej arytmetycznej. Czasami zamiast średniej arytmetycznej należy użyć średniej ważonej, z odpowiednio dobraną wagą. Punktem stałym funkcji <math>y \to \frac{x}{y^{n-1}}</math> jest <math>\sqrt[n]{x}</math>. Zaimplementuj obliczanie <math>n</math>-tego pierwiastka z <math>x</math> za pomocą obliczania punktu stałego i tłumienia przez uśrednianie z odpowiednimi wagami. Uwaga: W jaki sposób wagi zależą od <math>n</math>?

Wersja z 14:47, 4 wrz 2006

Praca domowa

  • Wygładzenie funkcji z odstępem dx polega na uśrednieniu f(xdx), f(x) i f(x+dx). Napisz procedurę wygładzającą daną funkcję z zadanym odstępem.
  • Jaki typ ma procedura compose zastosowana w wyrażeniu:
compose twice twice;;
  • Zaimplementuj aproksymację funkcji za pomocą szeregu Taylora. Twoja procedura powinna mieć następujące parametry: liczbę sumowanych wyrazów szeregu, punkt, w którym badana jest przybliżana funkcja i przybliżana funcja. Wynikiem powinno być przybliżenie funkcji. Zastosuj przybliżenie pochodnej przedstawione na wykładzie.

Ćwiczenia

  • Niech f: będzie funkcją 1-1 i "na" oraz taką, że f(0)=0, f jest rosnąca i |f(x)||x|. Zaimplementuj procedurę odwrotnosc, której wynikiem dla parametru f będzie przybliżenie f1 z dokładnością zadaną przez stałą epsilon (czyli jeśli g = odwrotnosc f, to x |g(x)f1(x)|epsilon).
  • [AS] Przedstawione w wykładzie tłumienie przez uśrednianie opiera się na średniej arytmetycznej. Czasami zamiast średniej arytmetycznej należy użyć średniej ważonej, z odpowiednio dobraną wagą. Punktem stałym funkcji yxyn1 jest xn. Zaimplementuj obliczanie n-tego pierwiastka z x za pomocą obliczania punktu stałego i tłumienia przez uśrednianie z odpowiednimi wagami. Uwaga: W jaki sposób wagi zależą od n?