Algebra liniowa z geometrią analityczną/Ćwiczenia 2: Przestrzenie wektorowe

Z Studia Informatyczne
Wersja z dnia 21:50, 11 wrz 2023 autorstwa Luki (dyskusja | edycje) (Zastępowanie tekstu – „,↵</math>” na „</math>,”)
Przejdź do nawigacjiPrzejdź do wyszukiwania

Zadanie 2.1

Niech V=(0,). Definiujemy odwzorowania:


:V×V(a,b)ab:=abV,


:×V(λ,a)λa:=aλV,


Wykazać, że czwórka (V,,,) jest przestrzenią wektorową.

Wskazówka
Rozwiązanie

Zadanie 2.2

W zbiorze 2 określamy następujące działania:


Parser nie mógł rozpoznać (błąd składni): {\displaystyle begin{align} \boxplus\colon\mathbb{R}^2\times\mathbb{R}^2\ni\left((x_1,x_2),(y_1,y_2)\right) &\to (x_1+y_1,x_2 +y_2) \in \mathbb{R}^2,\\ \odot\colon\mathbb{R}\times\mathbb{R}^2\ni(\lambda,(x_1,x_2)) &\to (\lambda x_1,\lambda x_2) \in \mathbb{R}^2 \end{align}}


Sprawdzić, czy czwórka (2,,,) jest przestrzenią wektorową. Sprawdzić, czy jej podprzestrzenią jest

a) A={(x1,x2)2:x10, x20},
b) B={(x1,x2)2:x1x20},
c) C={(x1,x2)2:x1+x2=0}.
Wskazówka
Rozwiązanie

Zadanie 2.3

W zbiorze 2 określamy następujące działania:


:2×2((x1,x2),(y1,y2))(x1+y1,x2+y2)2,:×2(λ,(x1,x2))(λx1,λx2)2.


Sprawdzić, czy czwórka (2,,,) jest przestrzenią wektorową.

Wskazówka
Rozwiązanie

Zadanie 2.4

Niech + oraz oznaczają zwykłe dodawanie i mnożenie w ciele liczb zespolonych. Definiujemy działanie:


:×(λ,z)(λ)z


Sprawdzić, czy czwórka (,,+,) jest przestrzenią wektorową.

Wskazówka
Rozwiązanie

Zadanie 2.5

Niech (V,𝕂,+,) będzie dowolną przestrzenią wektorową i niech ΘV oznacza wektor zerowy. Wykazać, że dla dowolnego wektora vV i dla dowolnego skalara λ𝕂 mamy

a) 0v=Θ,
b) λΘ=Θ,
c) (1)v=v.
Wskazówka
Rozwiązanie

Zadanie 2.6

Niech V będzie dowolną przestrzenią wektorową i niech U oraz W będą jej podprzestrzeniami. Wykazać, że


U+W={u+w:uU i wW}


też jest podprzestrzenią przestrzeni V. Wykazać, że jest to najmniejsza (ze względu na zawieranie) podprzestrzeń przestrzeni V zawierająca U i W.

Wskazówka
Rozwiązanie

Zadanie 2.7

Niech V będzie dowolną przestrzenią wektorową i niech U oraz W będą jej podprzestrzeniami. Wykazać, że zbiór UW jest podprzestrzenią przestrzeni V wtedy i tylko wtedy, gdy UW lub WU

Wskazówka
Rozwiązanie

Zadanie 2.8

Niech (V,𝕂,+,) będzie dowolną przestrzenią wektorową oraz niech X będzie zbiorem niepustym. W zbiorze


VX:={f | f:XV}


wprowadzamy działanie wewnętrzne oraz mnożenie przez skalary w następujący sposób:


fg:Xxf(x)+g(x)V,f,gVX.(λf):Xxλf(x)V,λ𝕂,fVX.


Wykazać, że (VX,𝕂,,) jest przestrzenią wektorową.

Dowód Komentarz

W szczególności, jeśli V=𝕂, to okaże się, że przestrzenią wektorową jest czwórka (𝕂X,𝕂,,), a jeśli dodatkowo jako X weźmiemy zbiór In={1,2,,n}, gdzie n jest liczbą naturalną dodatnią, to natychmiast otrzymamy, że przestrzenią wektorową jest (𝕂n,𝕂,+,) z działaniami określonymi następująco:


(x1,x2,,xn)+(y1,y2,,yn)=(x1+y1,x2+y2,,xn+yn),λ(x1,x2,,xn)=(λx1,λx2,,λxn).


Wskazówka
Rozwiązanie

Zadanie 2.9

Niech V będzie przestrzenią wektorową nad ciałem liczb rzeczywistych i niech + oznacza standardowe dodawanie w grupie addytywnej V×V. Dla liczby zespolonej ζ=α+𝐢β oraz elementu (u,v)V×V definiujemy iloczyn


ζ(u,v):=(αuβv,αv+βu)


Wykazać, że (V×V,,+,) jest przestrzenią wektorową.

Wskazówka
Rozwiązanie

Zadanie 2.10

Niech n0 i niech


  P={f:f  jest wielomianem }
  Un={f:f  jest wielomianem stopnia  n}
  Wn={f:f  jest wielomianem stopnia nie większego niż  n}

Wykazać, że P jest podprzestrzenią wektorową przestrzeni z działaniami określonymi w zadaniu 2.8. Sprawdzić czy dla dowolnego n0

a) Un jest podprzestrzenią wektorową przestrzeni P,
b) Wn jest podprzestrzenią wektorową przestrzeni P.


Wskazówka
Rozwiązanie