Analiza matematyczna 1/Ćwiczenia 5: Obliczanie granic: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu – „,↵</math>” na „</math>,”
Nie podano opisu zmian
Linia 419: Linia 419:
-1 & \text{gdy}& n=4k+3,\\
-1 & \text{gdy}& n=4k+3,\\
\end{array}  
\end{array}  
\right</math>
\right.</math>


Zatem kolejne wyrazy ciągu wynoszą:
Zatem kolejne wyrazy ciągu wynoszą:

Wersja z 22:35, 11 wrz 2023

5. Obliczanie granic

Ćwiczenie 5.1.

Obliczyć następujące granice ciągów:
(1) limn+5n+7n+8nn,
(2) limn+(1314)n+(1819)n+(2123)nn,
(3) limn+4n+1+3n+12n+1+3n.

Wskazówka
Rozwiązanie

Ćwiczenie 5.2.

Obliczyć następujące granice ciągów:
(1) limn+(11xn)xn, gdzie {xn} jest ciągiem o wyrazach dodatnich takim, że limn+xn=+,

(2) limn+(nn+1)n,

(3) limn+(n3n+2)n,

(4) limn+(n2+2n)n,

(5) limn+(n2+2n2+1)2n2+2,

(6) limn+(n+2n2+1)n.

Wskazówka
Rozwiązanie

Ćwiczenie 5.3.

Obliczyć następujące granice ciągów:
(1) limn+nsin3n
(2) limn+ncos1nsin10n
(3) limn+arctg(n2+1n)
(4) limn+n5+n62n+3n

Wskazówka
Rozwiązanie

Ćwiczenie 5.4.

Obliczyć granice górne i dolne następujących ciągów:
(1) an=(11n)ncosnπ,
(2) an=sinnπ2,
(3) an=2(1)n+3(1)n+1.

Wskazówka
Rozwiązanie

Ćwiczenie 5.5.

Ciąg {xn} zadany jest rekurencyjnie

x1=1,n1:xn+1=12(xn+cxn),

gdzie c>0. Zbadać zbieżność ciągu {xn}. Jeśli jest on zbieżny, obliczyć jego granicę.

Wskazówka
Rozwiązanie

Ćwiczenie 5.6.

Niech {an} będzie ciągiem liczbowym o wyrazach dodatnich (to znaczy n:an>0). Udowodnić następujące stwierdzenia:
(1) jeśli limn+an+1an=a<1, to limn+an=0;

(2) jeśli limn+an+1an=a>1, to limn+an=+.
Korzystając z powyższych stwierdzeń, wyznacz następujące granice:

(3) limn+ann!, gdzie a;

(4) limn+annk, gdzie a,k>0.

Wskazówka
Rozwiązanie