Analiza matematyczna 1/Ćwiczenia 3: Odległość i ciągi: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu – „.</math>” na „</math>.”
m Zastępowanie tekstu – „,</math>” na „</math>,”
Linia 429: Linia 429:




Wówczas <math>d(x_n,g)<R</math> dla dowolnego <math>n\in\mathbb{N},</math> czyli
Wówczas <math>d(x_n,g)<R</math> dla dowolnego <math>n\in\mathbb{N}</math>, czyli




Linia 509: Linia 509:
Zbadać, czy ciąg
Zbadać, czy ciąg
<math>\{x_n\}\subseteq \mathbb({R}^2,d_2)</math> gdzie
<math>\{x_n\}\subseteq \mathbb({R}^2,d_2)</math> gdzie
<math>x_n=\bigg\{\frac{2+n}{n},n\bigg\},</math>
<math>x_n=\bigg\{\frac{2+n}{n},n\bigg\}</math>,
spełnia warunek Cauchy'ego.
spełnia warunek Cauchy'ego.
}}
}}

Wersja z 09:35, 5 wrz 2023

3. Odległość i ciągi

Ćwiczenie 3.1.

Wykazać, że funkcje d i d1 zdefiniowane na N×N jako


d(x,y) =df maxi=1,,N|xiyi|dlax,yN,d1(x,y) =df i=1N|xiyi|dlax,yN


są metrykami (patrz przykład 3.5. i przykład 3.6.).


Wskazówka
Rozwiązanie
Plik:AM1.M03.C.R01.mp4
Odległość punktu od zbioru

Ćwiczenie 3.2.

Dla danej metryki d w N można zdefiniować odległość punktu x od zbioru niepustego A jako infimum wszystkich odległości między x a punktami zbioru A, czyli

dist(x,A)=infzAd(x,z).

Dany jest zbiór A=[0,1]×[0,1]2 oraz dwa punkty x=(2,3) oraz y=(3,2). Wyznaczyć
(a) odległość punktów x i y;
(b) dist(x,A);

(c) kolejno w metrykach: euklidesowej d2; taksówkowej d1; maksimowej d.

Wskazówka
Rozwiązanie

Ćwiczenie 3.3.

Udowodnić, że dla każdego ciągu {xn}N istnieje co najwyżej jedna granica, to znaczy:


[limn+xn=g1Nilimn+xn=g2N] g1=g2.


Wskazówka
Rozwiązanie

Ćwiczenie 3.4.

Udowodnić, że jeśli ciąg {xn}N jest zbieżny, to jest ograniczony.


Wskazówka
Rozwiązanie

a to oznacza, że ciąg {xn} jest ograniczony.

Ćwiczenie 3.5.

(1) Podać przykład nieskończonej rodziny zbiorów otwartych w takich, że ich przecięcie nie jest zbiorem otwartym.
(2) Podać przykład nieskończonej rodziny zbiorów domkniętych w takich, że ich suma nie jest zbiorem domkniętym.


Wskazówka
Rozwiązanie

Ćwiczenie 3.6.

Zbadać, czy ciąg {xn}(R2,d2) gdzie xn={2+nn,n}, spełnia warunek Cauchy'ego.

Wskazówka
Rozwiązanie