Analiza matematyczna 1/Ćwiczenia 5: Obliczanie granic: Różnice pomiędzy wersjami
m Zastępowanie tekstu - "\ \ge\" na "\ge" |
m Zastępowanie tekstu - "\ =\" na "=" |
||
Linia 68: | Linia 68: | ||
<center><math>\lim\limits_{n\rightarrow +\infty} | <center><math>\lim\limits_{n\rightarrow +\infty} | ||
\frac{4^n+1+3^{n+1}}{2^{n+1}+3^n} | \frac{4^n+1+3^{n+1}}{2^{n+1}+3^n} | ||
= | |||
\lim\limits_{n\rightarrow +\infty} | \lim\limits_{n\rightarrow +\infty} | ||
\frac{\displaystyle 1+\overbrace{\bigg(\frac{1}{4}\bigg)^n}^{\rightarrow 0}+3\cdot\overbrace{\bigg(\frac{3}{4}\bigg)^n}^{\rightarrow 0}}{\displaystyle 2\cdot\underbrace{\bigg(\frac{1}{2}\bigg)^n}_{\rightarrow 0^+}+\underbrace{\bigg(\frac{3}{4}\bigg)^n}_{\rightarrow 0^+}} | \frac{\displaystyle 1+\overbrace{\bigg(\frac{1}{4}\bigg)^n}^{\rightarrow 0}+3\cdot\overbrace{\bigg(\frac{3}{4}\bigg)^n}^{\rightarrow 0}}{\displaystyle 2\cdot\underbrace{\bigg(\frac{1}{2}\bigg)^n}_{\rightarrow 0^+}+\underbrace{\bigg(\frac{3}{4}\bigg)^n}_{\rightarrow 0^+}} | ||
= | |||
+\infty. | +\infty. | ||
</math></center> | </math></center> | ||
Linia 129: | Linia 129: | ||
& = & | & = & | ||
\lim\limits_{n\rightarrow +\infty}\bigg(\frac{x_n-1}{x_n}\bigg)^{x_n} | \lim\limits_{n\rightarrow +\infty}\bigg(\frac{x_n-1}{x_n}\bigg)^{x_n} | ||
= | |||
\lim\limits_{n\rightarrow +\infty}\frac{1}{\displaystyle\bigg(\frac{x_n}{x_n-1}\bigg)^{x_n}} | \lim\limits_{n\rightarrow +\infty}\frac{1}{\displaystyle\bigg(\frac{x_n}{x_n-1}\bigg)^{x_n}} | ||
= | |||
\lim\limits_{n\rightarrow +\infty}\frac{1}{\displaystyle\bigg(\frac{x_n-1}{x_n-1}+\frac{1}{x_n-1}\bigg)^{x_n}}\\ | \lim\limits_{n\rightarrow +\infty}\frac{1}{\displaystyle\bigg(\frac{x_n-1}{x_n-1}+\frac{1}{x_n-1}\bigg)^{x_n}}\\ | ||
& = & | & = & | ||
\lim\limits_{n\rightarrow +\infty}\frac{1}{\displaystyle\bigg(1+\frac{1}{x_n-1}\bigg)^{x_n}} | \lim\limits_{n\rightarrow +\infty}\frac{1}{\displaystyle\bigg(1+\frac{1}{x_n-1}\bigg)^{x_n}} | ||
= | |||
\lim\limits_{n\rightarrow +\infty}\frac{1}{\displaystyle\underbrace{\bigg(1+\frac{1}{x_n-1}\bigg)^{x_n-1}}_{\rightarrow e}\cdot\underbrace{\bigg(1+\frac{1}{x_n-1}\bigg)}_{\rightarrow 1}} | \lim\limits_{n\rightarrow +\infty}\frac{1}{\displaystyle\underbrace{\bigg(1+\frac{1}{x_n-1}\bigg)^{x_n-1}}_{\rightarrow e}\cdot\underbrace{\bigg(1+\frac{1}{x_n-1}\bigg)}_{\rightarrow 1}} | ||
= | |||
\frac{1}{e}, | \frac{1}{e}, | ||
\end{align}</math></center> | \end{align}</math></center> | ||
Linia 156: | Linia 156: | ||
& = & | & = & | ||
\lim\limits_{n\rightarrow +\infty}\bigg(\frac{n+1}{n+1}-\frac{1}{n+1}\bigg)^n | \lim\limits_{n\rightarrow +\infty}\bigg(\frac{n+1}{n+1}-\frac{1}{n+1}\bigg)^n | ||
= | |||
\lim\limits_{n\rightarrow +\infty}\bigg(1-\frac{1}{n+1}\bigg)^n\\ | \lim\limits_{n\rightarrow +\infty}\bigg(1-\frac{1}{n+1}\bigg)^n\\ | ||
& = & | & = & | ||
\lim\limits_{n\rightarrow +\infty}\underbrace{\bigg(1-\frac{1}{n+1}\bigg)^{n+1}}_{\rightarrow \frac{1}{e}}\cdot\underbrace{\bigg(1-\frac{1}{n+1}\bigg)^{-1}}_{\rightarrow 1} | \lim\limits_{n\rightarrow +\infty}\underbrace{\bigg(1-\frac{1}{n+1}\bigg)^{n+1}}_{\rightarrow \frac{1}{e}}\cdot\underbrace{\bigg(1-\frac{1}{n+1}\bigg)^{-1}}_{\rightarrow 1} | ||
= | |||
\frac{1}{e}, | \frac{1}{e}, | ||
\end{align}</math></center> | \end{align}</math></center> | ||
Linia 174: | Linia 174: | ||
& = & | & = & | ||
\lim\limits_{n\rightarrow +\infty}\bigg(\frac{n+2}{n+2}-\frac{5}{n+2}\bigg)^n | \lim\limits_{n\rightarrow +\infty}\bigg(\frac{n+2}{n+2}-\frac{5}{n+2}\bigg)^n | ||
= | |||
\lim\limits_{n\rightarrow +\infty}\bigg(1-\frac{5}{n+2}\bigg)^n\\ | \lim\limits_{n\rightarrow +\infty}\bigg(1-\frac{5}{n+2}\bigg)^n\\ | ||
& = & | & = & | ||
\lim\limits_{n\rightarrow +\infty}\bigg[\underbrace{\bigg(1-\frac{1}{\frac{n+2}{5}}\bigg)^{\displaystyle\frac{n+2}{5}}}_{\rightarrow \frac{1}{e}}\bigg]^{\overbrace{\frac{5n}{n+2}}^{\rightarrow 5}} | \lim\limits_{n\rightarrow +\infty}\bigg[\underbrace{\bigg(1-\frac{1}{\frac{n+2}{5}}\bigg)^{\displaystyle\frac{n+2}{5}}}_{\rightarrow \frac{1}{e}}\bigg]^{\overbrace{\frac{5n}{n+2}}^{\rightarrow 5}} | ||
= | |||
\frac{1}{e^5}, | \frac{1}{e^5}, | ||
\end{align}</math></center> | \end{align}</math></center> | ||
Linia 190: | Linia 190: | ||
<center><math>\lim\limits_{n\rightarrow +\infty} \frac{n^2+2}{n} | <center><math>\lim\limits_{n\rightarrow +\infty} \frac{n^2+2}{n} | ||
= | |||
\lim\limits_{n\rightarrow +\infty} \bigg(n+\frac{2}{n}\bigg) | \lim\limits_{n\rightarrow +\infty} \bigg(n+\frac{2}{n}\bigg) | ||
= | |||
+\infty, | +\infty, | ||
</math></center> | </math></center> | ||
Linia 199: | Linia 199: | ||
<center><math>\lim\limits_{n\rightarrow +\infty}\bigg(\underbrace{\frac{n^2+2}{n}}_{\rightarrow +\infty}\bigg)^{\overbrace{n}^{\rightarrow +\infty}} | <center><math>\lim\limits_{n\rightarrow +\infty}\bigg(\underbrace{\frac{n^2+2}{n}}_{\rightarrow +\infty}\bigg)^{\overbrace{n}^{\rightarrow +\infty}} | ||
= | |||
+\infty, | +\infty, | ||
</math></center> | </math></center> | ||
Linia 210: | Linia 210: | ||
<center><math>\lim\limits_{n\rightarrow +\infty}\bigg(\frac{n^2+2}{n^2+1}\bigg)^{2n^2+2} | <center><math>\lim\limits_{n\rightarrow +\infty}\bigg(\frac{n^2+2}{n^2+1}\bigg)^{2n^2+2} | ||
= | |||
\lim\limits_{n\rightarrow +\infty}\bigg(\frac{n^2+1}{n^2+1}+\frac{1}{n^2+1}\bigg)^{2n^2+2} =</math></center> | \lim\limits_{n\rightarrow +\infty}\bigg(\frac{n^2+1}{n^2+1}+\frac{1}{n^2+1}\bigg)^{2n^2+2} =</math></center> | ||
<center><math> | <center><math> | ||
= \lim\limits_{n\rightarrow +\infty}\bigg[\underbrace{\bigg(1+\frac{1}{n^2+1}\bigg)^{n^2+1}}_{\rightarrow e}\bigg]^2 | = \lim\limits_{n\rightarrow +\infty}\bigg[\underbrace{\bigg(1+\frac{1}{n^2+1}\bigg)^{n^2+1}}_{\rightarrow e}\bigg]^2 | ||
= | |||
e^2, | e^2, | ||
</math></center> | </math></center> | ||
Linia 224: | Linia 224: | ||
<center><math>\lim\limits_{n\rightarrow +\infty}\frac{n+2}{n^2+1} | <center><math>\lim\limits_{n\rightarrow +\infty}\frac{n+2}{n^2+1} | ||
= | |||
\lim\limits_{n\rightarrow +\infty}\frac{\frac{1}{n}+\frac{2}{n^2}}{1+\frac{1}{n^2}} | \lim\limits_{n\rightarrow +\infty}\frac{\frac{1}{n}+\frac{2}{n^2}}{1+\frac{1}{n^2}} | ||
= | |||
\frac{0}{1} | \frac{0}{1} | ||
= | |||
0, | 0, | ||
</math></center> | </math></center> | ||
Linia 235: | Linia 235: | ||
<center><math>\lim\limits_{n\rightarrow +\infty}\bigg(\underbrace{\frac{n+2}{n^2+1}}_{\rightarrow 0}\bigg)^{\overbrace{n}^{\rightarrow +\infty}} | <center><math>\lim\limits_{n\rightarrow +\infty}\bigg(\underbrace{\frac{n+2}{n^2+1}}_{\rightarrow 0}\bigg)^{\overbrace{n}^{\rightarrow +\infty}} | ||
= | |||
0, | 0, | ||
</math></center> | </math></center> | ||
Linia 277: | Linia 277: | ||
<center><math>\lim\limits_{n\rightarrow +\infty} n\cdot\sin\frac{3}{n} | <center><math>\lim\limits_{n\rightarrow +\infty} n\cdot\sin\frac{3}{n} | ||
= | |||
\lim\limits_{n\rightarrow +\infty}\frac{\sin\frac{3}{n}}{\frac{1}{n}} | \lim\limits_{n\rightarrow +\infty}\frac{\sin\frac{3}{n}}{\frac{1}{n}} | ||
= | |||
\lim\limits_{n\rightarrow +\infty} 3\cdot\underbrace{\frac{\sin\frac{3}{n}}{\frac{3}{n}}}_{\rightarrow 1} | \lim\limits_{n\rightarrow +\infty} 3\cdot\underbrace{\frac{\sin\frac{3}{n}}{\frac{3}{n}}}_{\rightarrow 1} | ||
= | |||
3\cdot 1 | 3\cdot 1 | ||
= | |||
3, | 3, | ||
</math></center> | </math></center> | ||
Linia 296: | Linia 296: | ||
<center><math>\lim\limits_{n\rightarrow +\infty} n\cdot\cos\frac{1}{n}\cdot\sin\frac{10}{n} | <center><math>\lim\limits_{n\rightarrow +\infty} n\cdot\cos\frac{1}{n}\cdot\sin\frac{10}{n} | ||
= | |||
\lim\limits_{n\rightarrow +\infty} 10\cdot\underbrace{\cos\frac{1}{n}}_{\rightarrow 1}\cdot\underbrace{\frac{\sin\frac{10}{n}}{\frac{10}{n}}}_{\rightarrow 1} | \lim\limits_{n\rightarrow +\infty} 10\cdot\underbrace{\cos\frac{1}{n}}_{\rightarrow 1}\cdot\underbrace{\frac{\sin\frac{10}{n}}{\frac{10}{n}}}_{\rightarrow 1} | ||
= | |||
10, | 10, | ||
</math></center> | </math></center> | ||
Linia 311: | Linia 311: | ||
<center><math>\lim\limits_{n\rightarrow +\infty}\frac{n^2+1}{n} | <center><math>\lim\limits_{n\rightarrow +\infty}\frac{n^2+1}{n} | ||
= | |||
\lim\limits_{n\rightarrow +\infty}\bigg(n+\frac{1}{n}\bigg) | \lim\limits_{n\rightarrow +\infty}\bigg(n+\frac{1}{n}\bigg) | ||
= | |||
+\infty, | +\infty, | ||
</math></center> | </math></center> | ||
Linia 320: | Linia 320: | ||
<center><math>\lim\limits_{n\rightarrow +\infty}\mathrm{arctg}\,\bigg(\underbrace{\frac{n^2+1}{n}}_{\rightarrow +\infty}\bigg) | <center><math>\lim\limits_{n\rightarrow +\infty}\mathrm{arctg}\,\bigg(\underbrace{\frac{n^2+1}{n}}_{\rightarrow +\infty}\bigg) | ||
= | |||
\frac{\pi}{2}. | \frac{\pi}{2}. | ||
</math></center> | </math></center> | ||
Linia 339: | Linia 339: | ||
<center><math>\lim\limits_{n\rightarrow +\infty} \frac{a_{n+1}}{a_n} | <center><math>\lim\limits_{n\rightarrow +\infty} \frac{a_{n+1}}{a_n} | ||
= | |||
\lim\limits_{n\rightarrow +\infty} \frac{2(n+1)^6 2^n}{2^{n+1}2n^6} | \lim\limits_{n\rightarrow +\infty} \frac{2(n+1)^6 2^n}{2^{n+1}2n^6} | ||
= | |||
\lim\limits_{n\rightarrow +\infty} \frac{1}{2}\bigg(1+\frac{1}{n}\bigg)^6 | \lim\limits_{n\rightarrow +\infty} \frac{1}{2}\bigg(1+\frac{1}{n}\bigg)^6 | ||
= | |||
\frac{1}{2}. | \frac{1}{2}. | ||
</math></center> | </math></center> | ||
Linia 354: | Linia 354: | ||
<center><math>\lim\limits_{n\rightarrow +\infty} \frac{n^5+n^6}{2^n+3^n} | <center><math>\lim\limits_{n\rightarrow +\infty} \frac{n^5+n^6}{2^n+3^n} | ||
= | |||
0. | 0. | ||
</math></center> | </math></center> | ||
Linia 396: | Linia 396: | ||
<math>\lim\limits_{k\rightarrow +\infty} a_{2k} | <math>\lim\limits_{k\rightarrow +\infty} a_{2k} | ||
= | |||
\lim\limits_{k\rightarrow +\infty} \bigg(1-\frac{1}{2k}\bigg)^{2k}\cos 2k\pi | \lim\limits_{k\rightarrow +\infty} \bigg(1-\frac{1}{2k}\bigg)^{2k}\cos 2k\pi | ||
= | |||
\lim\limits_{k\rightarrow +\infty} \bigg(1-\frac{1}{2k}\bigg)^{2k} | \lim\limits_{k\rightarrow +\infty} \bigg(1-\frac{1}{2k}\bigg)^{2k} | ||
= | |||
\frac{1}{e}, | \frac{1}{e}, | ||
</math> | </math> | ||
Linia 407: | Linia 407: | ||
<math>\lim\limits_{k\rightarrow +\infty} a_{2k-1} | <math>\lim\limits_{k\rightarrow +\infty} a_{2k-1} | ||
= | |||
\lim\limits_{k\rightarrow +\infty} \bigg(1-\frac{1}{2k-1}\bigg)^{2k-1}\cos (2k-1)\pi | \lim\limits_{k\rightarrow +\infty} \bigg(1-\frac{1}{2k-1}\bigg)^{2k-1}\cos (2k-1)\pi | ||
=</math> | =</math> | ||
<math> | <math> | ||
-\lim\limits_{k\rightarrow +\infty} \bigg(1-\frac{1}{2k-1}\bigg)^{2k-1} | -\lim\limits_{k\rightarrow +\infty} \bigg(1-\frac{1}{2k-1}\bigg)^{2k-1} | ||
= | |||
-\frac{1}{e}. | -\frac{1}{e}. | ||
</math> | </math> | ||
Linia 419: | Linia 419: | ||
<math>\limsup\limits_{n\rightarrow+\infty} a_n | <math>\limsup\limits_{n\rightarrow+\infty} a_n | ||
= | |||
\frac{1}{e} | \frac{1}{e} | ||
\quad\text{oraz}\quad | \quad\text{oraz}\quad | ||
\liminf\limits_{n\rightarrow+\infty} a_n | \liminf\limits_{n\rightarrow+\infty} a_n | ||
= | |||
-\frac{1}{e} | -\frac{1}{e} | ||
</math> | </math> | ||
Linia 431: | Linia 431: | ||
<math>a_n | <math>a_n | ||
= | |||
\sin\frac{n\pi}{2} | \sin\frac{n\pi}{2} | ||
= | |||
\left\{ | \left\{ | ||
\begin{array} {lll} | \begin{array} {lll} | ||
Linia 453: | Linia 453: | ||
<math>\liminf\limits_{n\rightarrow+\infty} a_n | <math>\liminf\limits_{n\rightarrow+\infty} a_n | ||
= | |||
-1 | -1 | ||
\quad\text{oraz}\quad | \quad\text{oraz}\quad | ||
\liminf\limits_{n\rightarrow+\infty} a_n | \liminf\limits_{n\rightarrow+\infty} a_n | ||
= | |||
1. | 1. | ||
</math> | </math> | ||
Linia 476: | Linia 476: | ||
<center><math>2\cdot(-1)^n | <center><math>2\cdot(-1)^n | ||
= | |||
\left\{ | \left\{ | ||
\begin{array} {lll} | \begin{array} {lll} | ||
Linia 485: | Linia 485: | ||
\quad\text{oraz}\quad | \quad\text{oraz}\quad | ||
3(-1)^{n+1} | 3(-1)^{n+1} | ||
= | |||
\left\{ | \left\{ | ||
\begin{array} {lll} | \begin{array} {lll} | ||
Linia 497: | Linia 497: | ||
<center><math>a_n | <center><math>a_n | ||
= | |||
2\cdot(-1)^n+3(-1)^{n+1} | 2\cdot(-1)^n+3(-1)^{n+1} | ||
= | |||
\left\{ | \left\{ | ||
\begin{array} {lll} | \begin{array} {lll} | ||
Linia 516: | Linia 516: | ||
<center><math>\liminf\limits_{n\rightarrow+\infty} a_n | <center><math>\liminf\limits_{n\rightarrow+\infty} a_n | ||
= | |||
-1 | -1 | ||
\quad\text{oraz}\quad | \quad\text{oraz}\quad | ||
\liminf\limits_{n\rightarrow+\infty} a_n | \liminf\limits_{n\rightarrow+\infty} a_n | ||
= | |||
1. | 1. | ||
</math></center> | </math></center> | ||
Linia 626: | Linia 626: | ||
<center><math>\underbrace{\lim\limits_{n\rightarrow +\infty} x_{n+1}}_{=g} | <center><math>\underbrace{\lim\limits_{n\rightarrow +\infty} x_{n+1}}_{=g} | ||
= | |||
\lim\limits_{n\rightarrow +\infty} \frac{1}{2}\bigg(x_n+\frac{c}{x_n}\bigg) | \lim\limits_{n\rightarrow +\infty} \frac{1}{2}\bigg(x_n+\frac{c}{x_n}\bigg) | ||
= | |||
\frac{1}{2}\bigg(\underbrace{\lim\limits_{n\rightarrow +\infty} x_n}_{=g}+\frac{c}{\underbrace{\lim\limits_{n\rightarrow +\infty} x_n}_{=g}}\bigg), | \frac{1}{2}\bigg(\underbrace{\lim\limits_{n\rightarrow +\infty} x_n}_{=g}+\frac{c}{\underbrace{\lim\limits_{n\rightarrow +\infty} x_n}_{=g}}\bigg), | ||
</math></center> | </math></center> | ||
Linia 635: | Linia 635: | ||
<center><math>g | <center><math>g | ||
= | |||
\frac{1}{2}\bigg(x+\frac{c}{g}\bigg). | \frac{1}{2}\bigg(x+\frac{c}{g}\bigg). | ||
</math></center> | </math></center> | ||
Linia 731: | Linia 731: | ||
\ <\ | \ <\ | ||
b^{n+1-N}\cdot a_N | b^{n+1-N}\cdot a_N | ||
= | |||
Mb^n, | Mb^n, | ||
</math></center> | </math></center> | ||
Linia 782: | Linia 782: | ||
> | > | ||
b^{n+1-N}\cdot a_N | b^{n+1-N}\cdot a_N | ||
= | |||
Mb^n, | Mb^n, | ||
</math></center> | </math></center> | ||
Linia 806: | Linia 806: | ||
<center><math>\lim\limits_{n\rightarrow +\infty}\frac{a_{n+1}}{a_n} | <center><math>\lim\limits_{n\rightarrow +\infty}\frac{a_{n+1}}{a_n} | ||
= | |||
\lim\limits_{n\rightarrow +\infty}\frac{a^{n+1}n!}{(n+1)! a^n} | \lim\limits_{n\rightarrow +\infty}\frac{a^{n+1}n!}{(n+1)! a^n} | ||
= | |||
\lim\limits_{n\rightarrow +\infty} \frac{a}{n} | \lim\limits_{n\rightarrow +\infty} \frac{a}{n} | ||
= | |||
0. | 0. | ||
</math></center> | </math></center> | ||
Linia 826: | Linia 826: | ||
<center><math>\lim\limits_{n\rightarrow +\infty} \frac{a_{n+1}}{a_n} | <center><math>\lim\limits_{n\rightarrow +\infty} \frac{a_{n+1}}{a_n} | ||
= | |||
\lim\limits_{n\rightarrow +\infty} \frac{a^{n+1}n^k}{(n+1)^ka^n} | \lim\limits_{n\rightarrow +\infty} \frac{a^{n+1}n^k}{(n+1)^ka^n} | ||
= | |||
\lim\limits_{n\rightarrow +\infty} \frac{a}{\displaystyle\bigg(1+\frac{1}{n}\bigg)^k} | \lim\limits_{n\rightarrow +\infty} \frac{a}{\displaystyle\bigg(1+\frac{1}{n}\bigg)^k} | ||
= | |||
a. | a. | ||
</math></center> | </math></center> |
Wersja z 12:51, 9 cze 2020
5. Obliczanie granic
Ćwiczenie 5.1.
Obliczyć następujące granice ciągów:
(1)
(2)
(3)
Ćwiczenie 5.2.
Obliczyć następujące granice ciągów:
(1)
gdzie jest ciągiem o wyrazach dodatnich takim, że
(2)
(3)
(4)
(5)
(6)
Ćwiczenie 5.3.
Obliczyć następujące granice ciągów:
(1)
(2)
(3)
(4)
Ćwiczenie 5.4.
Obliczyć granice górne i dolne następujących ciągów:
(1)
(2)
(3)
(1) Zauważmy, że dla oraz (patrz ćwiczenie 5.2.).
Zatem dla wyrazów parzystych mamy
a dla nieparzystych
Wnioskujemy stąd, że
(2) Zauważmy, że
Zatem kolejne wyrazy ciągu wynoszą:
Jedynymi wartościami ciągu jak również jego punktami skupienia są: Zatem
<flash>file=AM1_M05.C.R01.swf|width=375|height=375</flash> <div.thumbcaption>Wykres funkcji oraz ciągu |
<flash>file=AM1_M05.C.R02.swf|width=375|height=375</flash> <div.thumbcaption>Wykres ciągu |
(3) Zauważmy, że
Zatem ciąg przyjmuje tylko dwie wartości
co możemy zapisać krócej
czyli
Ćwiczenie 5.5.
Ciąg zadany jest rekurencyjnie
gdzie Zbadać zbieżność ciągu Jeśli jest on zbieżny, obliczyć jego granicę.
Ćwiczenie 5.6.
Niech będzie ciągiem liczbowym o wyrazach dodatnich
(to znaczy
).
Udowodnić następujące stwierdzenia:
(1) jeśli
to
;
(2) jeśli
to
Korzystając z powyższych stwierdzeń, wyznacz następujące
granice:
(3)
gdzie ;
(4) gdzie