Analiza matematyczna 1/Ćwiczenia 13: Całka nieoznaczona: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu - "\aligned" na "\begin{align}"
m Zastępowanie tekstu - "\ =\" na "="
Linia 33: Linia 33:
& =&\displaystyle
& =&\displaystyle
\int \cos 2x\,dx
\int \cos 2x\,dx
\ =\
=
\frac{1}{2}\sin 2x+c_2.
\frac{1}{2}\sin 2x+c_2.
\end{array}</math></center>
\end{array}</math></center>
Linia 41: Linia 41:


<center><math> \displaystyle \int \cos^2x\,dx
<center><math> \displaystyle \int \cos^2x\,dx
\ =\
=
\frac{1}{2}x+\frac{1}{4}\sin 2x+c_3,
\frac{1}{2}x+\frac{1}{4}\sin 2x+c_3,
</math></center>
</math></center>
Linia 48: Linia 48:


<center><math> \displaystyle \int \sin^2x\,dx
<center><math> \displaystyle \int \sin^2x\,dx
\ =\
=
\frac{1}{2}x-\frac{1}{4}\sin 2x+c_4.
\frac{1}{2}x-\frac{1}{4}\sin 2x+c_4.
</math></center>
</math></center>
Linia 84: Linia 84:
\end{array}  
\end{array}  
\right|
\right|
\ =\
=
\int\frac{du}{u}\\\\
\int\frac{du}{u}\\\\
&=& \displaystyle\ln|u|+c
&=& \displaystyle\ln|u|+c
\ =\
=
\ln \big|f(x)\big|+c.
\ln \big|f(x)\big|+c.
\end{array}</math></center>
\end{array}</math></center>
Linia 98: Linia 98:


<center><math> \displaystyle \int\big(f(x)\big)^{\alpha}f'(x)\,dx
<center><math> \displaystyle \int\big(f(x)\big)^{\alpha}f'(x)\,dx
\ =\
=
\left|
\left|
\begin{array} {rcl}
\begin{array} {rcl}
Linia 105: Linia 105:
\end{array}  
\end{array}  
\right|
\right|
\ =\
=
\int u^{\alpha}\,du
\int u^{\alpha}\,du
\ =\
=
\frac{1}{\alpha+1}u^{\alpha+1}+c
\frac{1}{\alpha+1}u^{\alpha+1}+c
\ =\
=
\frac{1}{\alpha+1}\big(f(x)\big)^{\alpha+1}+c.
\frac{1}{\alpha+1}\big(f(x)\big)^{\alpha+1}+c.
</math></center>
</math></center>
Linia 140: Linia 140:


<center><math> \displaystyle I
<center><math> \displaystyle I
\ =\
=
\int\frac{x+1}{x^2+2x-7}\,dx
\int\frac{x+1}{x^2+2x-7}\,dx
\ =\
=
\frac{1}{2}\int\frac{2x+2}{x^2+2x-7}\,dx
\frac{1}{2}\int\frac{2x+2}{x^2+2x-7}\,dx
\ =\
=
\frac{1}{2}\int\frac{(x^2+2x-7)'}{x^2+2x-7}\,dx,
\frac{1}{2}\int\frac{(x^2+2x-7)'}{x^2+2x-7}\,dx,
</math></center>
</math></center>
Linia 152: Linia 152:


<center><math> \displaystyle I
<center><math> \displaystyle I
\ =\
=
\ln\big|x^2+2x-7\big|+c.
\ln\big|x^2+2x-7\big|+c.
</math></center>
</math></center>
Linia 165: Linia 165:


<center><math> \displaystyle \frac{4-4x^2}{8x^3+12x^2+6x+1}
<center><math> \displaystyle \frac{4-4x^2}{8x^3+12x^2+6x+1}
\ =\
=
\frac{A}{x+\frac{1}{2}}
\frac{A}{x+\frac{1}{2}}
+\frac{B}{(x+\frac{1}{2})^2}
+\frac{B}{(x+\frac{1}{2})^2}
+\frac{C}{(x+\frac{1}{2})^3}
+\frac{C}{(x+\frac{1}{2})^3}
\ =\
=
\frac{2A}{2x+1}
\frac{2A}{2x+1}
+\frac{4B}{(2x+1)^2}
+\frac{4B}{(2x+1)^2}
Linia 179: Linia 179:


<center><math> \displaystyle 4-4x^2
<center><math> \displaystyle 4-4x^2
\ =\
=
2A(2x+1)^2
2A(2x+1)^2
+4B(2x+1)
+4B(2x+1)
Linia 193: Linia 193:


<center><math> \displaystyle 4-4x^2
<center><math> \displaystyle 4-4x^2
\ =\
=
2A(2x+1)^2
2A(2x+1)^2
+4B(2x+1)
+4B(2x+1)
Linia 202: Linia 202:


<center><math> \displaystyle 1-4x^2
<center><math> \displaystyle 1-4x^2
\ =\
=
2A(2x+1)^2
2A(2x+1)^2
+4B(2x+1)
+4B(2x+1)
Linia 210: Linia 210:


<center><math> \displaystyle (1-2x)(1+2x)
<center><math> \displaystyle (1-2x)(1+2x)
\ =\
=
2A(2x+1)^2
2A(2x+1)^2
+4B(2x+1).
+4B(2x+1).
Linia 218: Linia 218:


<center><math> \displaystyle 1-2x
<center><math> \displaystyle 1-2x
\ =\
=
2A(2x+1)
2A(2x+1)
+4B.
+4B.
Linia 228: Linia 228:


<center><math> \displaystyle 1-2x
<center><math> \displaystyle 1-2x
\ =\
=
2A(2x+1)
2A(2x+1)
+2,
+2,
Linia 236: Linia 236:


<center><math> \displaystyle -1-2x
<center><math> \displaystyle -1-2x
\ =\
=
2A(2x+1),
2A(2x+1),
</math></center>
</math></center>
Linia 245: Linia 245:


<center><math> \displaystyle \frac{4-4x^2}{8x^3+12x^2+6x+1}
<center><math> \displaystyle \frac{4-4x^2}{8x^3+12x^2+6x+1}
\ =\
=
\frac{-\frac{1}{2}}{x+\frac{1}{2}}
\frac{-\frac{1}{2}}{x+\frac{1}{2}}
+\frac{\frac{1}{2}}{(x+\frac{1}{2})^2}
+\frac{\frac{1}{2}}{(x+\frac{1}{2})^2}
Linia 282: Linia 282:
<center><math> \displaystyle -\frac{1}{2}\ln\bigg|x+\frac{1}{2}\bigg|-\frac{1}{2}\ln 2+
<center><math> \displaystyle -\frac{1}{2}\ln\bigg|x+\frac{1}{2}\bigg|-\frac{1}{2}\ln 2+
\underbrace{\frac{1}{2}\ln 2+c}_{=c_1}
\underbrace{\frac{1}{2}\ln 2+c}_{=c_1}
\ =\
=
-\frac{1}{2}\ln\big|2x+1\big|+c_1.
-\frac{1}{2}\ln\big|2x+1\big|+c_1.
</math></center>
</math></center>
Linia 311: Linia 311:


<center><math> \displaystyle I_n
<center><math> \displaystyle I_n
\ =\
=
\int\frac{dx}{(x^2+1)^n}
\int\frac{dx}{(x^2+1)^n}
\ =\
=
\int\frac{x^2+1-x^2}{(x^2+1)^n}\,dx
\int\frac{x^2+1-x^2}{(x^2+1)^n}\,dx
\ =\
=
\underbrace{\int\frac{1}{(x^2+1)^{n-1}}\,dx}_{=I_{n-1}}
\underbrace{\int\frac{1}{(x^2+1)^{n-1}}\,dx}_{=I_{n-1}}
-\int\frac{x^2}{(x^2+1)^n}\,dx.
-\int\frac{x^2}{(x^2+1)^n}\,dx.
Linia 338: Linia 338:


<center><math> \displaystyle \int\frac{dx}{x^2+1}
<center><math> \displaystyle \int\frac{dx}{x^2+1}
\ =\
=
\mathrm{arctg}\, x+c.
\mathrm{arctg}\, x+c.
</math></center>
</math></center>
Linia 345: Linia 345:


<center><math> \displaystyle I_n
<center><math> \displaystyle I_n
\ =\
=
\int\frac{dx}{(x^2+1)^n}
\int\frac{dx}{(x^2+1)^n}
\ =\
=
\int\frac{x^2+1-x^2}{(x^2+1)^n}\,dx
\int\frac{x^2+1-x^2}{(x^2+1)^n}\,dx
\ =\
=
\underbrace{\int\frac{1}{(x^2+1)^{n-1}}\,dx}_{=I_{n-1}}
\underbrace{\int\frac{1}{(x^2+1)^{n-1}}\,dx}_{=I_{n-1}}
-\underbrace{\int\frac{x^2}{(x^2+1)^n}\,dx}_{=J_n}.
-\underbrace{\int\frac{x^2}{(x^2+1)^n}\,dx}_{=J_n}.
Linia 361: Linia 361:


<center><math> \displaystyle \int\frac{x}{(x^2+1)^n}\,dx
<center><math> \displaystyle \int\frac{x}{(x^2+1)^n}\,dx
\ =\
=
\left|
\left|
\begin{array} {rcl}
\begin{array} {rcl}
Linia 368: Linia 368:
\end{array}  
\end{array}  
\right|
\right|
\ =\
=
\frac{1}{2}\int\frac{dt}{t^n}
\frac{1}{2}\int\frac{dt}{t^n}
\ =\
=
\frac{1}{2}\frac{t^{-n+1}}{-n+1}+c
\frac{1}{2}\frac{t^{-n+1}}{-n+1}+c
\ =\
=
\frac{-1}{2(n-1)(x^2-1)^{n-1}}+c.
\frac{-1}{2(n-1)(x^2-1)^{n-1}}+c.
</math></center>
</math></center>
Linia 390: Linia 390:
x\cdot\frac{-1}{2(n-1)(x^2-1)^{n-1}}
x\cdot\frac{-1}{2(n-1)(x^2-1)^{n-1}}
-\int\frac{-dx}{2(n-1)(x^2-1)^{n-1}}
-\int\frac{-dx}{2(n-1)(x^2-1)^{n-1}}
\ =\
=
\frac{-x}{(2n-2)(x^2-1)^{n-1}}
\frac{-x}{(2n-2)(x^2-1)^{n-1}}
+\frac{1}{2n-2}I_{n-1}.
+\frac{1}{2n-2}I_{n-1}.
Linia 399: Linia 399:


<center><math> \displaystyle I_n
<center><math> \displaystyle I_n
\ =\
=
I_{n-1}
I_{n-1}
+\frac{x}{2(n-1)(x^2-1)^{n-1}}
+\frac{x}{2(n-1)(x^2-1)^{n-1}}
-\frac{1}{2n-2}I_{n-1}
-\frac{1}{2n-2}I_{n-1}
\ =\
=
\frac{1}{2n-2}\cdot\frac{x}{(x^2-1)^{n-1}}
\frac{1}{2n-2}\cdot\frac{x}{(x^2-1)^{n-1}}
+\frac{2n-3}{2n-2}I_{n-1}.
+\frac{2n-3}{2n-2}I_{n-1}.
Linia 433: Linia 433:


<center><math> \displaystyle \int\frac{bx+c}{(x^2+Bx+C)^n}\,dx
<center><math> \displaystyle \int\frac{bx+c}{(x^2+Bx+C)^n}\,dx
\ =\
=
\frac{b}{2}\cdot
\frac{b}{2}\cdot
\underbrace{\int\frac{2x+B}{(x^2+Bx+C)^n}\,dx}_{=K_1}
\underbrace{\int\frac{2x+B}{(x^2+Bx+C)^n}\,dx}_{=K_1}
Linia 445: Linia 445:


<center><math> \displaystyle K_1
<center><math> \displaystyle K_1
\ =\
=
\int \frac{2x+B}{(x^2+Bx+C)^n}\,dx
\int \frac{2x+B}{(x^2+Bx+C)^n}\,dx
\ =\
=
\left\{
\left\{
\begin{array} {lll}
\begin{array} {lll}
Linia 465: Linia 465:
& = &
& = &
\int\frac{1}{(x^2+Bx+C)^n}\,dx
\int\frac{1}{(x^2+Bx+C)^n}\,dx
\ =\
=
\int\frac{dx}{\displaystyle\bigg[\bigg(x+\frac{B}{2}\bigg)^2+\underbrace{\frac{4C-B^2}{4}}_{=S}\bigg]^n}
\int\frac{dx}{\displaystyle\bigg[\bigg(x+\frac{B}{2}\bigg)^2+\underbrace{\frac{4C-B^2}{4}}_{=S}\bigg]^n}
\ =\
=
\frac{1}{S^n}
\frac{1}{S^n}
\int\frac{dx}{\displaystyle\bigg[\bigg(\frac{x+\frac{B}{2}}{\sqrt{S}}\bigg)^2+1\bigg]^n}\\
\int\frac{dx}{\displaystyle\bigg[\bigg(\frac{x+\frac{B}{2}}{\sqrt{S}}\bigg)^2+1\bigg]^n}\\
Linia 478: Linia 478:
\end{array}  
\end{array}  
\right|
\right|
\ =\
=
\frac{\sqrt{S}}{S^n}\int\frac{dt}{(1+t)^n}.
\frac{\sqrt{S}}{S^n}\int\frac{dt}{(1+t)^n}.
\end{align}</math></center>
\end{align}</math></center>
Linia 512: Linia 512:


<center><math> \displaystyle \frac{x^5+4x^3-x^2+13x-3}{x^4+2x^2+9}
<center><math> \displaystyle \frac{x^5+4x^3-x^2+13x-3}{x^4+2x^2+9}
\ =\
=
x+
x+
\frac{x}{x^2+2x+3}+\frac{x-1}{x^2-2x+3}.
\frac{x}{x^2+2x+3}+\frac{x-1}{x^2-2x+3}.
Linia 520: Linia 520:


<center><math> \displaystyle \int\frac{x^5+4x^3-x^2+13x-3}{x^4+2x^2+9}\,dx
<center><math> \displaystyle \int\frac{x^5+4x^3-x^2+13x-3}{x^4+2x^2+9}\,dx
\ =\
=
\int x\,dx
\int x\,dx
+
+
Linia 531: Linia 531:


<center><math> \displaystyle K_1
<center><math> \displaystyle K_1
\ =\
=
\underbrace{\frac{1}{2}\int\frac{2x+2}{x^2+2x+3}\,dx}_{L_1}
\underbrace{\frac{1}{2}\int\frac{2x+2}{x^2+2x+3}\,dx}_{L_1}
-\underbrace{\int\frac{1}{x^2+2x+3}\,dx}_{L_2}.
-\underbrace{\int\frac{1}{x^2+2x+3}\,dx}_{L_2}.
Linia 539: Linia 539:


<center><math> \displaystyle L_1
<center><math> \displaystyle L_1
\ =\
=
\frac{1}{2}\ln\big(x^2+2x+3\big)+c_1
\frac{1}{2}\ln\big(x^2+2x+3\big)+c_1
</math></center>
</math></center>
Linia 549: Linia 549:
& = &
& = &
\int\frac{1}{(x+1)^2+2}\,dx
\int\frac{1}{(x+1)^2+2}\,dx
\ =\
=
\frac{1}{2}\int\frac{1}{\displaystyle\bigg(\frac{x+1}{\sqrt{2}}\bigg)^2+1}\,dx
\frac{1}{2}\int\frac{1}{\displaystyle\bigg(\frac{x+1}{\sqrt{2}}\bigg)^2+1}\,dx
\ =\
=
\left|
\left|
\begin{array} {lll}
\begin{array} {lll}
Linia 561: Linia 561:
& = &
& = &
\frac{\sqrt{2}}{2}\int\frac{dt}{t^2+1}
\frac{\sqrt{2}}{2}\int\frac{dt}{t^2+1}
\ =\
=
\frac{\sqrt{2}}{2}\mathrm{arctg}\,\frac{x+1}{\sqrt{2}}+c_2,
\frac{\sqrt{2}}{2}\mathrm{arctg}\,\frac{x+1}{\sqrt{2}}+c_2,
\end{align}</math></center>
\end{align}</math></center>
Linia 568: Linia 568:


<center><math> \displaystyle K_1
<center><math> \displaystyle K_1
\ =\
=
\ln\big(x^2+2x+3\big)
\ln\big(x^2+2x+3\big)
+
+
Linia 577: Linia 577:


<center><math> \displaystyle K_2
<center><math> \displaystyle K_2
\ =\
=
\int\frac{x-1}{x^2-2x+3}\,dx
\int\frac{x-1}{x^2-2x+3}\,dx
\ =\
=
\frac{1}{2}\int\frac{2x-2}{x^2-2x+3}\,dx
\frac{1}{2}\int\frac{2x-2}{x^2-2x+3}\,dx
\ =\
=
\frac{1}{2}\ln\big(x^2-2x+3\big)+c_4
\frac{1}{2}\ln\big(x^2-2x+3\big)+c_4
</math></center>
</math></center>
Linia 588: Linia 588:


<center><math> \displaystyle \int\frac{x^5+4x^3-x^2+13x-3}{x^4+2x^2+9}\,dx
<center><math> \displaystyle \int\frac{x^5+4x^3-x^2+13x-3}{x^4+2x^2+9}\,dx
\ =\
=
\frac{1}{2}x^2
\frac{1}{2}x^2
+
+
Linia 620: Linia 620:


<center><math> \displaystyle \int\frac{1+4x}{\sqrt{4x^2+x}}\,dx
<center><math> \displaystyle \int\frac{1+4x}{\sqrt{4x^2+x}}\,dx
\ =\
=
a\sqrt{4x^2+x}
a\sqrt{4x^2+x}
+k
+k
Linia 630: Linia 630:


<center><math> \displaystyle \frac{1+4x}{\sqrt{4x^2+x}}
<center><math> \displaystyle \frac{1+4x}{\sqrt{4x^2+x}}
\ =\
=
\frac{a(8x+1)}{2\sqrt{4x^2+x}}
\frac{a(8x+1)}{2\sqrt{4x^2+x}}
+\frac{k}{\sqrt{4x^2+x}},
+\frac{k}{\sqrt{4x^2+x}},
Linia 638: Linia 638:


<center><math> \displaystyle 1+4x
<center><math> \displaystyle 1+4x
\ =\
=
4ax+\frac{1}{2}a+k,
4ax+\frac{1}{2}a+k,
</math></center>
</math></center>
Linia 648: Linia 648:
& = &
& = &
\int\frac{dx}{\sqrt{(2x+\frac{1}{4})^2-\frac{1}{16}}}
\int\frac{dx}{\sqrt{(2x+\frac{1}{4})^2-\frac{1}{16}}}
\ =\
=
\left|
\left|
\begin{array} {rcl}
\begin{array} {rcl}
Linia 655: Linia 655:
\end{array}  
\end{array}  
\right|
\right|
\ =\
=
\frac{1}{2}\int\frac{dt}{\sqrt{t^2-\frac{1}{16}}}\\
\frac{1}{2}\int\frac{dt}{\sqrt{t^2-\frac{1}{16}}}\\
& = &
& = &
\frac{1}{2}
\frac{1}{2}
\ln\left|t+\sqrt{t^2-\frac{1}{16}}\right|+c
\ln\left|t+\sqrt{t^2-\frac{1}{16}}\right|+c
\ =\
=
\frac{1}{2}
\frac{1}{2}
\ln\left|2x+\frac{1}{4}+\sqrt{4x^2+x}\right|+c.
\ln\left|2x+\frac{1}{4}+\sqrt{4x^2+x}\right|+c.
Linia 669: Linia 669:


<center><math> \displaystyle \int\sqrt{1+4x^2}\,dx
<center><math> \displaystyle \int\sqrt{1+4x^2}\,dx
\ =\
=
\int\frac{1+4x^2}{\sqrt{1+4x^2}}\,dx,
\int\frac{1+4x^2}{\sqrt{1+4x^2}}\,dx,
</math></center>
</math></center>
Linia 678: Linia 678:


<center><math> \displaystyle \int\frac{1+4x^2}{\sqrt{1+4x^2}}\,dx
<center><math> \displaystyle \int\frac{1+4x^2}{\sqrt{1+4x^2}}\,dx
\ =\
=
(ax+b)\sqrt{1+4x^2}
(ax+b)\sqrt{1+4x^2}
+k
+k
Linia 688: Linia 688:


<center><math> \displaystyle \frac{1+4x^2}{\sqrt{1+4x^2}}
<center><math> \displaystyle \frac{1+4x^2}{\sqrt{1+4x^2}}
\ =\
=
a\sqrt{1+4x^2}
a\sqrt{1+4x^2}
+\frac{(ax+b)\cdot 8x}{2\sqrt{1+4x^2}}
+\frac{(ax+b)\cdot 8x}{2\sqrt{1+4x^2}}
Linia 697: Linia 697:


<center><math> \displaystyle 1+4x^2
<center><math> \displaystyle 1+4x^2
\ =\
=
a(1+4x^2)
a(1+4x^2)
+4ax^2+4bx+k,
+4ax^2+4bx+k,
Linia 713: Linia 713:
\end{array}  
\end{array}  
\right|
\right|
\ =\
=
\frac{1}{2}\int\frac{dt}{\sqrt{t^2+1}}\\
\frac{1}{2}\int\frac{dt}{\sqrt{t^2+1}}\\
& = &
& = &
\frac{1}{2}
\frac{1}{2}
\ln\left|t+\sqrt{t^2+1}\right|+c
\ln\left|t+\sqrt{t^2+1}\right|+c
\ =\
=
\frac{1}{2}
\frac{1}{2}
\ln\left|2x+\sqrt{1+4x^2}\right|+c.
\ln\left|2x+\sqrt{1+4x^2}\right|+c.

Wersja z 12:51, 9 cze 2020

13. Całka nieoznaczona

Ćwiczenie 13.1.

Obliczyć całki: cos2xdx i sin2xdx.


Wskazówka
Rozwiązanie

Ćwiczenie 13.2.

Obliczyć całki:
(1) f(x)f(x)dx, gdzie fC1(),
(2) (f(x))αf(x)dx, gdzie fC1() oraz α.


Wskazówka
Rozwiązanie

Ćwiczenie 13.3.

Obliczyć następujące całki z funkcji wymiernych:
(1) x+1x2+2x7dx,
(2) 44x28x3+12x2+6x+1dx.


Wskazówka
Rozwiązanie

Ćwiczenie 13.4.

(1) Wyprowadzić wzór rekurencyjny na obliczanie całki In=dx(x2+1)n dla n=1,2,. Wypisać wzory na I1,I2,I3.
(2) Sprowadzić obliczanie całki z ułamka prostego postaci bx+c(x2+Bx+C)k (gdzie B24C<0) do całki z punktu (1).


Wskazówka
Rozwiązanie

Ćwiczenie 13.5.

Obliczyć całkę x5+4x3x2+13x3x4+2x2+9dx.


Wskazówka
Rozwiązanie

Ćwiczenie 13.6.

Obliczyć całki:
(1) 1+4x4x2+xdx,
(2) 1+4x2dx.


Wskazówka
Rozwiązanie