Analiza matematyczna 1/Ćwiczenia 13: Całka nieoznaczona: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Linia 529: Linia 529:
</math></center>
</math></center>


Policzmy każdą z całek osobno według metody
Policzmy każdą z całek osobno według metody opisanej z [[#cw_13_3|ćwiczenie 13.3.]]
opisanej z Zadaniu [[##z.am1.c.14.030|Uzupelnic z.am1.c.14.030|]].


<center><math> \displaystyle K_1
<center><math> \displaystyle K_1

Wersja z 14:42, 12 wrz 2006

13. Całka nieoznaczona

Ćwiczenie 13.1.

Obliczyć całki: cos2xdx i sin2xdx.


Wskazówka
Rozwiązanie

Ćwiczenie 13.2.

Obliczyć całki:
(1) f(x)f(x)dx, gdzie fC1(),
(2) (f(x))αf(x)dx, gdzie fC1() oraz α.


Wskazówka
Rozwiązanie

Ćwiczenie 13.3.

Obliczyć następujące całki z funkcji wymiernych:
(1) x+1x2+2x7dx,
(2) 44x28x3+12x2+6x+1dx.


Wskazówka
Rozwiązanie

Ćwiczenie 13.4.

(1) Wyprowadzić wzór rekurencyjny na obliczanie całki In=dx(x2+1)n dla n=1,2,. Wypisać wzory na I1,I2,I3.
(2) Sprowadzić obliczanie całki z ułamka prostego postaci bx+c(x2+Bx+C)k (gdzie B24C<0) do całki z punktu (1).


Wskazówka
Rozwiązanie

Ćwiczenie 13.5.

Obliczyć całkę x5+4x3x2+13x3x4+2x2+9dx.


Wskazówka
Rozwiązanie

Ćwiczenie 13.6.

Obliczyć całki:
(1) 1+4x4x2+xdx,
(2) 1+4x2dx.


Wskazówka
Rozwiązanie