Analiza matematyczna 1/Ćwiczenia 3: Odległość i ciągi: Różnice pomiędzy wersjami
m Zastępowanie tekstu - "<div class="thumb t(.*)"><div style="width:(.*);"> <flash>file=(.*)\.swf\|width=(.*)\|height=(.*)<\/flash> <div\.thumbcaption>(.*)<\/div> <\/div><\/div>" na "$4x$5px|thumb|$1|$6" |
m Zastępowanie tekstu - "<div class="thumb t(.*)"><div style="width:(.*)px;"> <flashwrap>file=(.*).swf\|size=small<\/flashwrap> <div\.thumbcaption>(.*)<\/div><\/div> <\/div>" na "$2x$2px|thumb|$1|$4" |
||
Linia 150: | Linia 150: | ||
</div></div> | </div></div> | ||
[[File:AM1.M03.C.R01.mp4|253x253px|thumb|right|Odległość punktu od zbioru]] | |||
{{cwiczenie|3.2.|| | {{cwiczenie|3.2.|| | ||
Dla danej metryki <math>d</math> w | Dla danej metryki <math>d</math> w |
Wersja z 13:38, 3 paź 2021
3. Odległość i ciągi
Ćwiczenie 3.1.
Ćwiczenie 3.2.
Dla danej metryki w można zdefiniować odległość punktu od zbioru niepustego jako infimum wszystkich odległości między a punktami zbioru , czyli
Dany jest zbiór
oraz dwa punkty oraz
Wyznaczyć
(a) odległość punktów i ;
(b) ;
(c) kolejno w metrykach: euklidesowej ; taksówkowej ; maksimowej
Ćwiczenie 3.3.
Udowodnić, że dla każdego ciągu istnieje co najwyżej jedna granica, to znaczy:
Ćwiczenie 3.4.
Udowodnić, że jeśli ciąg jest zbieżny, to jest ograniczony.
a to oznacza, że ciąg jest ograniczony.
Ćwiczenie 3.5.
(1)
Podać przykład nieskończonej rodziny zbiorów otwartych w
takich, że ich przecięcie nie jest zbiorem otwartym.
(2)
Podać przykład nieskończonej rodziny zbiorów domkniętych w
takich, że ich suma nie jest zbiorem domkniętym.
Ćwiczenie 3.6.
Zbadać, czy ciąg gdzie spełnia warunek Cauchy'ego.