Analiza matematyczna 1/Ćwiczenia 13: Całka nieoznaczona: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
m Zastępowanie tekstu - "\aligned" na "\begin{align}" |
m Zastępowanie tekstu - "\ =\" na "=" |
||
Linia 33: | Linia 33: | ||
& =&\displaystyle | & =&\displaystyle | ||
\int \cos 2x\,dx | \int \cos 2x\,dx | ||
= | |||
\frac{1}{2}\sin 2x+c_2. | \frac{1}{2}\sin 2x+c_2. | ||
\end{array}</math></center> | \end{array}</math></center> | ||
Linia 41: | Linia 41: | ||
<center><math> \displaystyle \int \cos^2x\,dx | <center><math> \displaystyle \int \cos^2x\,dx | ||
= | |||
\frac{1}{2}x+\frac{1}{4}\sin 2x+c_3, | \frac{1}{2}x+\frac{1}{4}\sin 2x+c_3, | ||
</math></center> | </math></center> | ||
Linia 48: | Linia 48: | ||
<center><math> \displaystyle \int \sin^2x\,dx | <center><math> \displaystyle \int \sin^2x\,dx | ||
= | |||
\frac{1}{2}x-\frac{1}{4}\sin 2x+c_4. | \frac{1}{2}x-\frac{1}{4}\sin 2x+c_4. | ||
</math></center> | </math></center> | ||
Linia 84: | Linia 84: | ||
\end{array} | \end{array} | ||
\right| | \right| | ||
= | |||
\int\frac{du}{u}\\\\ | \int\frac{du}{u}\\\\ | ||
&=& \displaystyle\ln|u|+c | &=& \displaystyle\ln|u|+c | ||
= | |||
\ln \big|f(x)\big|+c. | \ln \big|f(x)\big|+c. | ||
\end{array}</math></center> | \end{array}</math></center> | ||
Linia 98: | Linia 98: | ||
<center><math> \displaystyle \int\big(f(x)\big)^{\alpha}f'(x)\,dx | <center><math> \displaystyle \int\big(f(x)\big)^{\alpha}f'(x)\,dx | ||
= | |||
\left| | \left| | ||
\begin{array} {rcl} | \begin{array} {rcl} | ||
Linia 105: | Linia 105: | ||
\end{array} | \end{array} | ||
\right| | \right| | ||
= | |||
\int u^{\alpha}\,du | \int u^{\alpha}\,du | ||
= | |||
\frac{1}{\alpha+1}u^{\alpha+1}+c | \frac{1}{\alpha+1}u^{\alpha+1}+c | ||
= | |||
\frac{1}{\alpha+1}\big(f(x)\big)^{\alpha+1}+c. | \frac{1}{\alpha+1}\big(f(x)\big)^{\alpha+1}+c. | ||
</math></center> | </math></center> | ||
Linia 140: | Linia 140: | ||
<center><math> \displaystyle I | <center><math> \displaystyle I | ||
= | |||
\int\frac{x+1}{x^2+2x-7}\,dx | \int\frac{x+1}{x^2+2x-7}\,dx | ||
= | |||
\frac{1}{2}\int\frac{2x+2}{x^2+2x-7}\,dx | \frac{1}{2}\int\frac{2x+2}{x^2+2x-7}\,dx | ||
= | |||
\frac{1}{2}\int\frac{(x^2+2x-7)'}{x^2+2x-7}\,dx, | \frac{1}{2}\int\frac{(x^2+2x-7)'}{x^2+2x-7}\,dx, | ||
</math></center> | </math></center> | ||
Linia 152: | Linia 152: | ||
<center><math> \displaystyle I | <center><math> \displaystyle I | ||
= | |||
\ln\big|x^2+2x-7\big|+c. | \ln\big|x^2+2x-7\big|+c. | ||
</math></center> | </math></center> | ||
Linia 165: | Linia 165: | ||
<center><math> \displaystyle \frac{4-4x^2}{8x^3+12x^2+6x+1} | <center><math> \displaystyle \frac{4-4x^2}{8x^3+12x^2+6x+1} | ||
= | |||
\frac{A}{x+\frac{1}{2}} | \frac{A}{x+\frac{1}{2}} | ||
+\frac{B}{(x+\frac{1}{2})^2} | +\frac{B}{(x+\frac{1}{2})^2} | ||
+\frac{C}{(x+\frac{1}{2})^3} | +\frac{C}{(x+\frac{1}{2})^3} | ||
= | |||
\frac{2A}{2x+1} | \frac{2A}{2x+1} | ||
+\frac{4B}{(2x+1)^2} | +\frac{4B}{(2x+1)^2} | ||
Linia 179: | Linia 179: | ||
<center><math> \displaystyle 4-4x^2 | <center><math> \displaystyle 4-4x^2 | ||
= | |||
2A(2x+1)^2 | 2A(2x+1)^2 | ||
+4B(2x+1) | +4B(2x+1) | ||
Linia 193: | Linia 193: | ||
<center><math> \displaystyle 4-4x^2 | <center><math> \displaystyle 4-4x^2 | ||
= | |||
2A(2x+1)^2 | 2A(2x+1)^2 | ||
+4B(2x+1) | +4B(2x+1) | ||
Linia 202: | Linia 202: | ||
<center><math> \displaystyle 1-4x^2 | <center><math> \displaystyle 1-4x^2 | ||
= | |||
2A(2x+1)^2 | 2A(2x+1)^2 | ||
+4B(2x+1) | +4B(2x+1) | ||
Linia 210: | Linia 210: | ||
<center><math> \displaystyle (1-2x)(1+2x) | <center><math> \displaystyle (1-2x)(1+2x) | ||
= | |||
2A(2x+1)^2 | 2A(2x+1)^2 | ||
+4B(2x+1). | +4B(2x+1). | ||
Linia 218: | Linia 218: | ||
<center><math> \displaystyle 1-2x | <center><math> \displaystyle 1-2x | ||
= | |||
2A(2x+1) | 2A(2x+1) | ||
+4B. | +4B. | ||
Linia 228: | Linia 228: | ||
<center><math> \displaystyle 1-2x | <center><math> \displaystyle 1-2x | ||
= | |||
2A(2x+1) | 2A(2x+1) | ||
+2, | +2, | ||
Linia 236: | Linia 236: | ||
<center><math> \displaystyle -1-2x | <center><math> \displaystyle -1-2x | ||
= | |||
2A(2x+1), | 2A(2x+1), | ||
</math></center> | </math></center> | ||
Linia 245: | Linia 245: | ||
<center><math> \displaystyle \frac{4-4x^2}{8x^3+12x^2+6x+1} | <center><math> \displaystyle \frac{4-4x^2}{8x^3+12x^2+6x+1} | ||
= | |||
\frac{-\frac{1}{2}}{x+\frac{1}{2}} | \frac{-\frac{1}{2}}{x+\frac{1}{2}} | ||
+\frac{\frac{1}{2}}{(x+\frac{1}{2})^2} | +\frac{\frac{1}{2}}{(x+\frac{1}{2})^2} | ||
Linia 282: | Linia 282: | ||
<center><math> \displaystyle -\frac{1}{2}\ln\bigg|x+\frac{1}{2}\bigg|-\frac{1}{2}\ln 2+ | <center><math> \displaystyle -\frac{1}{2}\ln\bigg|x+\frac{1}{2}\bigg|-\frac{1}{2}\ln 2+ | ||
\underbrace{\frac{1}{2}\ln 2+c}_{=c_1} | \underbrace{\frac{1}{2}\ln 2+c}_{=c_1} | ||
= | |||
-\frac{1}{2}\ln\big|2x+1\big|+c_1. | -\frac{1}{2}\ln\big|2x+1\big|+c_1. | ||
</math></center> | </math></center> | ||
Linia 311: | Linia 311: | ||
<center><math> \displaystyle I_n | <center><math> \displaystyle I_n | ||
= | |||
\int\frac{dx}{(x^2+1)^n} | \int\frac{dx}{(x^2+1)^n} | ||
= | |||
\int\frac{x^2+1-x^2}{(x^2+1)^n}\,dx | \int\frac{x^2+1-x^2}{(x^2+1)^n}\,dx | ||
= | |||
\underbrace{\int\frac{1}{(x^2+1)^{n-1}}\,dx}_{=I_{n-1}} | \underbrace{\int\frac{1}{(x^2+1)^{n-1}}\,dx}_{=I_{n-1}} | ||
-\int\frac{x^2}{(x^2+1)^n}\,dx. | -\int\frac{x^2}{(x^2+1)^n}\,dx. | ||
Linia 338: | Linia 338: | ||
<center><math> \displaystyle \int\frac{dx}{x^2+1} | <center><math> \displaystyle \int\frac{dx}{x^2+1} | ||
= | |||
\mathrm{arctg}\, x+c. | \mathrm{arctg}\, x+c. | ||
</math></center> | </math></center> | ||
Linia 345: | Linia 345: | ||
<center><math> \displaystyle I_n | <center><math> \displaystyle I_n | ||
= | |||
\int\frac{dx}{(x^2+1)^n} | \int\frac{dx}{(x^2+1)^n} | ||
= | |||
\int\frac{x^2+1-x^2}{(x^2+1)^n}\,dx | \int\frac{x^2+1-x^2}{(x^2+1)^n}\,dx | ||
= | |||
\underbrace{\int\frac{1}{(x^2+1)^{n-1}}\,dx}_{=I_{n-1}} | \underbrace{\int\frac{1}{(x^2+1)^{n-1}}\,dx}_{=I_{n-1}} | ||
-\underbrace{\int\frac{x^2}{(x^2+1)^n}\,dx}_{=J_n}. | -\underbrace{\int\frac{x^2}{(x^2+1)^n}\,dx}_{=J_n}. | ||
Linia 361: | Linia 361: | ||
<center><math> \displaystyle \int\frac{x}{(x^2+1)^n}\,dx | <center><math> \displaystyle \int\frac{x}{(x^2+1)^n}\,dx | ||
= | |||
\left| | \left| | ||
\begin{array} {rcl} | \begin{array} {rcl} | ||
Linia 368: | Linia 368: | ||
\end{array} | \end{array} | ||
\right| | \right| | ||
= | |||
\frac{1}{2}\int\frac{dt}{t^n} | \frac{1}{2}\int\frac{dt}{t^n} | ||
= | |||
\frac{1}{2}\frac{t^{-n+1}}{-n+1}+c | \frac{1}{2}\frac{t^{-n+1}}{-n+1}+c | ||
= | |||
\frac{-1}{2(n-1)(x^2-1)^{n-1}}+c. | \frac{-1}{2(n-1)(x^2-1)^{n-1}}+c. | ||
</math></center> | </math></center> | ||
Linia 390: | Linia 390: | ||
x\cdot\frac{-1}{2(n-1)(x^2-1)^{n-1}} | x\cdot\frac{-1}{2(n-1)(x^2-1)^{n-1}} | ||
-\int\frac{-dx}{2(n-1)(x^2-1)^{n-1}} | -\int\frac{-dx}{2(n-1)(x^2-1)^{n-1}} | ||
= | |||
\frac{-x}{(2n-2)(x^2-1)^{n-1}} | \frac{-x}{(2n-2)(x^2-1)^{n-1}} | ||
+\frac{1}{2n-2}I_{n-1}. | +\frac{1}{2n-2}I_{n-1}. | ||
Linia 399: | Linia 399: | ||
<center><math> \displaystyle I_n | <center><math> \displaystyle I_n | ||
= | |||
I_{n-1} | I_{n-1} | ||
+\frac{x}{2(n-1)(x^2-1)^{n-1}} | +\frac{x}{2(n-1)(x^2-1)^{n-1}} | ||
-\frac{1}{2n-2}I_{n-1} | -\frac{1}{2n-2}I_{n-1} | ||
= | |||
\frac{1}{2n-2}\cdot\frac{x}{(x^2-1)^{n-1}} | \frac{1}{2n-2}\cdot\frac{x}{(x^2-1)^{n-1}} | ||
+\frac{2n-3}{2n-2}I_{n-1}. | +\frac{2n-3}{2n-2}I_{n-1}. | ||
Linia 433: | Linia 433: | ||
<center><math> \displaystyle \int\frac{bx+c}{(x^2+Bx+C)^n}\,dx | <center><math> \displaystyle \int\frac{bx+c}{(x^2+Bx+C)^n}\,dx | ||
= | |||
\frac{b}{2}\cdot | \frac{b}{2}\cdot | ||
\underbrace{\int\frac{2x+B}{(x^2+Bx+C)^n}\,dx}_{=K_1} | \underbrace{\int\frac{2x+B}{(x^2+Bx+C)^n}\,dx}_{=K_1} | ||
Linia 445: | Linia 445: | ||
<center><math> \displaystyle K_1 | <center><math> \displaystyle K_1 | ||
= | |||
\int \frac{2x+B}{(x^2+Bx+C)^n}\,dx | \int \frac{2x+B}{(x^2+Bx+C)^n}\,dx | ||
= | |||
\left\{ | \left\{ | ||
\begin{array} {lll} | \begin{array} {lll} | ||
Linia 465: | Linia 465: | ||
& = & | & = & | ||
\int\frac{1}{(x^2+Bx+C)^n}\,dx | \int\frac{1}{(x^2+Bx+C)^n}\,dx | ||
= | |||
\int\frac{dx}{\displaystyle\bigg[\bigg(x+\frac{B}{2}\bigg)^2+\underbrace{\frac{4C-B^2}{4}}_{=S}\bigg]^n} | \int\frac{dx}{\displaystyle\bigg[\bigg(x+\frac{B}{2}\bigg)^2+\underbrace{\frac{4C-B^2}{4}}_{=S}\bigg]^n} | ||
= | |||
\frac{1}{S^n} | \frac{1}{S^n} | ||
\int\frac{dx}{\displaystyle\bigg[\bigg(\frac{x+\frac{B}{2}}{\sqrt{S}}\bigg)^2+1\bigg]^n}\\ | \int\frac{dx}{\displaystyle\bigg[\bigg(\frac{x+\frac{B}{2}}{\sqrt{S}}\bigg)^2+1\bigg]^n}\\ | ||
Linia 478: | Linia 478: | ||
\end{array} | \end{array} | ||
\right| | \right| | ||
= | |||
\frac{\sqrt{S}}{S^n}\int\frac{dt}{(1+t)^n}. | \frac{\sqrt{S}}{S^n}\int\frac{dt}{(1+t)^n}. | ||
\end{align}</math></center> | \end{align}</math></center> | ||
Linia 512: | Linia 512: | ||
<center><math> \displaystyle \frac{x^5+4x^3-x^2+13x-3}{x^4+2x^2+9} | <center><math> \displaystyle \frac{x^5+4x^3-x^2+13x-3}{x^4+2x^2+9} | ||
= | |||
x+ | x+ | ||
\frac{x}{x^2+2x+3}+\frac{x-1}{x^2-2x+3}. | \frac{x}{x^2+2x+3}+\frac{x-1}{x^2-2x+3}. | ||
Linia 520: | Linia 520: | ||
<center><math> \displaystyle \int\frac{x^5+4x^3-x^2+13x-3}{x^4+2x^2+9}\,dx | <center><math> \displaystyle \int\frac{x^5+4x^3-x^2+13x-3}{x^4+2x^2+9}\,dx | ||
= | |||
\int x\,dx | \int x\,dx | ||
+ | + | ||
Linia 531: | Linia 531: | ||
<center><math> \displaystyle K_1 | <center><math> \displaystyle K_1 | ||
= | |||
\underbrace{\frac{1}{2}\int\frac{2x+2}{x^2+2x+3}\,dx}_{L_1} | \underbrace{\frac{1}{2}\int\frac{2x+2}{x^2+2x+3}\,dx}_{L_1} | ||
-\underbrace{\int\frac{1}{x^2+2x+3}\,dx}_{L_2}. | -\underbrace{\int\frac{1}{x^2+2x+3}\,dx}_{L_2}. | ||
Linia 539: | Linia 539: | ||
<center><math> \displaystyle L_1 | <center><math> \displaystyle L_1 | ||
= | |||
\frac{1}{2}\ln\big(x^2+2x+3\big)+c_1 | \frac{1}{2}\ln\big(x^2+2x+3\big)+c_1 | ||
</math></center> | </math></center> | ||
Linia 549: | Linia 549: | ||
& = & | & = & | ||
\int\frac{1}{(x+1)^2+2}\,dx | \int\frac{1}{(x+1)^2+2}\,dx | ||
= | |||
\frac{1}{2}\int\frac{1}{\displaystyle\bigg(\frac{x+1}{\sqrt{2}}\bigg)^2+1}\,dx | \frac{1}{2}\int\frac{1}{\displaystyle\bigg(\frac{x+1}{\sqrt{2}}\bigg)^2+1}\,dx | ||
= | |||
\left| | \left| | ||
\begin{array} {lll} | \begin{array} {lll} | ||
Linia 561: | Linia 561: | ||
& = & | & = & | ||
\frac{\sqrt{2}}{2}\int\frac{dt}{t^2+1} | \frac{\sqrt{2}}{2}\int\frac{dt}{t^2+1} | ||
= | |||
\frac{\sqrt{2}}{2}\mathrm{arctg}\,\frac{x+1}{\sqrt{2}}+c_2, | \frac{\sqrt{2}}{2}\mathrm{arctg}\,\frac{x+1}{\sqrt{2}}+c_2, | ||
\end{align}</math></center> | \end{align}</math></center> | ||
Linia 568: | Linia 568: | ||
<center><math> \displaystyle K_1 | <center><math> \displaystyle K_1 | ||
= | |||
\ln\big(x^2+2x+3\big) | \ln\big(x^2+2x+3\big) | ||
+ | + | ||
Linia 577: | Linia 577: | ||
<center><math> \displaystyle K_2 | <center><math> \displaystyle K_2 | ||
= | |||
\int\frac{x-1}{x^2-2x+3}\,dx | \int\frac{x-1}{x^2-2x+3}\,dx | ||
= | |||
\frac{1}{2}\int\frac{2x-2}{x^2-2x+3}\,dx | \frac{1}{2}\int\frac{2x-2}{x^2-2x+3}\,dx | ||
= | |||
\frac{1}{2}\ln\big(x^2-2x+3\big)+c_4 | \frac{1}{2}\ln\big(x^2-2x+3\big)+c_4 | ||
</math></center> | </math></center> | ||
Linia 588: | Linia 588: | ||
<center><math> \displaystyle \int\frac{x^5+4x^3-x^2+13x-3}{x^4+2x^2+9}\,dx | <center><math> \displaystyle \int\frac{x^5+4x^3-x^2+13x-3}{x^4+2x^2+9}\,dx | ||
= | |||
\frac{1}{2}x^2 | \frac{1}{2}x^2 | ||
+ | + | ||
Linia 620: | Linia 620: | ||
<center><math> \displaystyle \int\frac{1+4x}{\sqrt{4x^2+x}}\,dx | <center><math> \displaystyle \int\frac{1+4x}{\sqrt{4x^2+x}}\,dx | ||
= | |||
a\sqrt{4x^2+x} | a\sqrt{4x^2+x} | ||
+k | +k | ||
Linia 630: | Linia 630: | ||
<center><math> \displaystyle \frac{1+4x}{\sqrt{4x^2+x}} | <center><math> \displaystyle \frac{1+4x}{\sqrt{4x^2+x}} | ||
= | |||
\frac{a(8x+1)}{2\sqrt{4x^2+x}} | \frac{a(8x+1)}{2\sqrt{4x^2+x}} | ||
+\frac{k}{\sqrt{4x^2+x}}, | +\frac{k}{\sqrt{4x^2+x}}, | ||
Linia 638: | Linia 638: | ||
<center><math> \displaystyle 1+4x | <center><math> \displaystyle 1+4x | ||
= | |||
4ax+\frac{1}{2}a+k, | 4ax+\frac{1}{2}a+k, | ||
</math></center> | </math></center> | ||
Linia 648: | Linia 648: | ||
& = & | & = & | ||
\int\frac{dx}{\sqrt{(2x+\frac{1}{4})^2-\frac{1}{16}}} | \int\frac{dx}{\sqrt{(2x+\frac{1}{4})^2-\frac{1}{16}}} | ||
= | |||
\left| | \left| | ||
\begin{array} {rcl} | \begin{array} {rcl} | ||
Linia 655: | Linia 655: | ||
\end{array} | \end{array} | ||
\right| | \right| | ||
= | |||
\frac{1}{2}\int\frac{dt}{\sqrt{t^2-\frac{1}{16}}}\\ | \frac{1}{2}\int\frac{dt}{\sqrt{t^2-\frac{1}{16}}}\\ | ||
& = & | & = & | ||
\frac{1}{2} | \frac{1}{2} | ||
\ln\left|t+\sqrt{t^2-\frac{1}{16}}\right|+c | \ln\left|t+\sqrt{t^2-\frac{1}{16}}\right|+c | ||
= | |||
\frac{1}{2} | \frac{1}{2} | ||
\ln\left|2x+\frac{1}{4}+\sqrt{4x^2+x}\right|+c. | \ln\left|2x+\frac{1}{4}+\sqrt{4x^2+x}\right|+c. | ||
Linia 669: | Linia 669: | ||
<center><math> \displaystyle \int\sqrt{1+4x^2}\,dx | <center><math> \displaystyle \int\sqrt{1+4x^2}\,dx | ||
= | |||
\int\frac{1+4x^2}{\sqrt{1+4x^2}}\,dx, | \int\frac{1+4x^2}{\sqrt{1+4x^2}}\,dx, | ||
</math></center> | </math></center> | ||
Linia 678: | Linia 678: | ||
<center><math> \displaystyle \int\frac{1+4x^2}{\sqrt{1+4x^2}}\,dx | <center><math> \displaystyle \int\frac{1+4x^2}{\sqrt{1+4x^2}}\,dx | ||
= | |||
(ax+b)\sqrt{1+4x^2} | (ax+b)\sqrt{1+4x^2} | ||
+k | +k | ||
Linia 688: | Linia 688: | ||
<center><math> \displaystyle \frac{1+4x^2}{\sqrt{1+4x^2}} | <center><math> \displaystyle \frac{1+4x^2}{\sqrt{1+4x^2}} | ||
= | |||
a\sqrt{1+4x^2} | a\sqrt{1+4x^2} | ||
+\frac{(ax+b)\cdot 8x}{2\sqrt{1+4x^2}} | +\frac{(ax+b)\cdot 8x}{2\sqrt{1+4x^2}} | ||
Linia 697: | Linia 697: | ||
<center><math> \displaystyle 1+4x^2 | <center><math> \displaystyle 1+4x^2 | ||
= | |||
a(1+4x^2) | a(1+4x^2) | ||
+4ax^2+4bx+k, | +4ax^2+4bx+k, | ||
Linia 713: | Linia 713: | ||
\end{array} | \end{array} | ||
\right| | \right| | ||
= | |||
\frac{1}{2}\int\frac{dt}{\sqrt{t^2+1}}\\ | \frac{1}{2}\int\frac{dt}{\sqrt{t^2+1}}\\ | ||
& = & | & = & | ||
\frac{1}{2} | \frac{1}{2} | ||
\ln\left|t+\sqrt{t^2+1}\right|+c | \ln\left|t+\sqrt{t^2+1}\right|+c | ||
= | |||
\frac{1}{2} | \frac{1}{2} | ||
\ln\left|2x+\sqrt{1+4x^2}\right|+c. | \ln\left|2x+\sqrt{1+4x^2}\right|+c. |
Wersja z 12:51, 9 cze 2020
13. Całka nieoznaczona
Ćwiczenie 13.1.
Obliczyć całki: i
Wskazówka
Rozwiązanie
Ćwiczenie 13.2.
Obliczyć całki:
(1)
gdzie
(2)
gdzie oraz
Wskazówka
Rozwiązanie
Ćwiczenie 13.3.
Obliczyć następujące całki z funkcji wymiernych:
(1)
(2)
Wskazówka
Rozwiązanie
Ćwiczenie 13.4.
(1)
Wyprowadzić wzór rekurencyjny na obliczanie całki
dla
Wypisać wzory na
(2)
Sprowadzić obliczanie całki z ułamka prostego postaci
(gdzie )
do całki z punktu (1).
Wskazówka
Rozwiązanie
Ćwiczenie 13.5.
Obliczyć całkę
Wskazówka
Rozwiązanie
Ćwiczenie 13.6.
Obliczyć całki:
(1)
(2)
Wskazówka
Rozwiązanie