Analiza matematyczna 2/Ćwiczenia 10: Wielowymiarowa całka Riemanna: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Linia 151: Linia 151:


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">   
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Wskazówka </span><div class="mw-collapsible-content" style="display:none">   
Skorzystać z liniowości całki (patrz Stwierdzenie
Skorzystać z liniowości całki (patrz [[Analiza matematyczna 2/Wykład 10: Wielowymiarowa całka Riemanna#stw_10_8|stwierdzenie 10.8.]]) i z Zadania  [[##z.new.am2.c.10.020|Uzupelnic z.new.am2.c.10.020|]].
[[##s.am2.w.10.080|Uzupelnic s.am2.w.10.080|]]) i z Zadania  [[##z.new.am2.c.10.020|Uzupelnic z.new.am2.c.10.020|]].
</div></div>
</div></div>



Wersja z 18:05, 4 wrz 2006

Wielowymiarowa całka Riemanna

Ćwiczenie 10.1.

Policzyć z definicji następującą całkę

Kxy dxdy,

gdzie K=[0,1]×[0,1].

Wskazówka
Rozwiązanie

Ćwiczenie 10.2.

Policzyć z definicji całkę

Kx dxdydz,

gdzie K=[0,1]×[0,1]×[0,1].

Wskazówka
Rozwiązanie

Ćwiczenie 10.3.

Policzyć całkę

Kx+y dxdydz,

gdzie K=[0,1]×[0,1]×[0,1].

Wskazówka
Rozwiązanie

Ćwiczenie 10.4.

Wykazać, że zbiór BN o objętości zero jest zbiorem miary zero.

Wskazówka
Rozwiązanie

Ćwiczenie 10.5.

Wykazać, że odcinek T2 ma objętość zero.

Wskazówka
Rozwiązanie

Ćwiczenie 10.6.

(Zadanie nadobowiązkowe.)
Wykazać, że suma przeliczalnej ilości zbiorów miary zero jest zbiorem miary zero.

Wskazówka
Rozwiązanie

Ćwiczenie 10.7.

Wykazać, że prosta w 2 ma miarę zero.

Rozwiązanie

Ćwiczenie 10.8.

Wykazać, że ściana kostki K w N ma miarę zero.

Wskazówka
Rozwiązanie

Ćwiczenie 10.9.

Znaleźć przykład funkcji na odcinku [0,1], która jest różna od funkcji ciągłej na zbiorze miary zero, ale która nie jest ciągła w żadnym punkcie.

Wskazówka
Rozwiązanie