Analiza matematyczna 1/Ćwiczenia 3: Odległość i ciągi: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Kamil (dyskusja | edycje)
Kamil (dyskusja | edycje)
Linia 171: Linia 171:


<br><br><center>
<br><br><center>
<div class="thumb"><div style="width:375px;">
[[Rysunek]]<br><br></center>
<flash>file=AM1.M03.C.R03.swf|width=375|height=375</flash>
<div.thumbcaption>AM1.M03.C.R03</div>
</div></div><br><br></center>


Dany jest zbiór <math>A=[0,1]\times[0,1]\subseteq\mathbb{R}^2</math>
Dany jest zbiór <math>A=[0,1]\times[0,1]\subseteq\mathbb{R}^2</math>

Wersja z 13:40, 25 sie 2006

3. Odległość i ciągi

Ćwiczenie 3.1.

Wykazać, że funkcje d i d1 zdefiniowane na N×N jako


Parser nie mógł rozpoznać (nieznana funkcja „\aligned”): {\displaystyle \aligned d_{\infty}(x,y) & \ \stackrel{df}{=}\ & \max_{i=1,\ldots, N}|x_i-y_i|, \qquad\textrm{dla}\quad x,y\in\mathbb{R}^N,\\ d_1(x,y) & \ \stackrel{df}{=}\ & \sum_{i=1}^{N}|x_i-y_i| \qquad\textrm{dla}\quad x,y\in\mathbb{R}^N, \endaligned}


są metrykami (patrz przykład 3.5. i przykład 3.6.).


Wskazówka
Rozwiązanie

Ćwiczenie 3.2.

Dla danej metryki d w N można zdefiniować odległość punktu x od zbioru A jako infimum wszystkich odległości między x a punktami zbioru A, czyli


Parser nie mógł rozpoznać (błąd składni): {\displaystyle \mathrm{dist}\, (x,A) \ =\ \inf_{z\in A}d(x,z). }



Rysunek

Dany jest zbiór A=[0,1]×[0,1]2 oraz dwa punkty x=(2,3) oraz y=(3,2). Wyznaczyć
(a) odległość punktów x i y;
(b) dist(x,A); kolejno w metrykach: euklidesowej d2; taksówkowej d1; maksimowej d.


Wskazówka
Rozwiązanie .

(a)

Parser nie mógł rozpoznać (błąd składni): {\displaystyle d_{\infty}(x,y) \ =\ d_{\infty}\big((2,3),(3,-2)\big) \ =\ \max\big\{|2-3|,|3+2|\big\} \ =\ 5. }


(b) Odległość x od zbioru A jest realizowana na przykład w punkcie z=(0,1) (patrz rysunek; łatwo pokazać, że odległość od x do dowolnego innego punktu zbioru A jest niemniejsza, niż do z), zatem


Parser nie mógł rozpoznać (błąd składni): {\displaystyle \mathrm{dist}\, (x,A) \ =\ d_2\big((2,3),(0,1)\big) \ =\ \max\big\{|2-0|,|3-1|\big\} \ =\ 2. }

Ćwiczenie 3.3.

Udowodnić, że dla każdego ciągu {xn}N istnieje co najwyżej jedna granica, to znaczy:


Parser nie mógł rozpoznać (błąd składni): {\displaystyle \bigg[\lim\limits_{n\rightarrow +\infty} x_n = g_1\in \mathbb{R}^N \quad\textrm{i}\quad \lim\limits_{n\rightarrow +\infty} x_n = g_2\in \mathbb{R}^N \bigg] \ \Longrightarrow\ g_1=g_2. }


Wskazówka
Rozwiązanie

Ćwiczenie 3.4.

Udowodnić, że jeśli ciąg {xn}N jest zbieżny, to jest ograniczony.


Wskazówka
Rozwiązanie

Ćwiczenie 3.5.

(1) Podać przykład nieskończonej rodziny zbiorów otwartych w takich, że ich przecięcie nie jest zbiorem otwartym.
(2) Podać przykład nieskończonej rodziny zbiorów domkniętych w takich, że ich suma nie jest zbiorem domkniętym.


Wskazówka
Rozwiązanie

Ćwiczenie 3.6.

Zbadać czy ciąg {xn}2, gdzie xn={2+nn,n}, spełnia warunek Cauchy'ego.

Wskazówka
Rozwiązanie