Test GR

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania





1111111111111111111111111111111111111111111


1111111111111111111111111111111111111111111


22222222222222222222222222222222222222222

Ciągi w przestrzeniach metrycznych. Test

3333333333333333333333333333333333333333333333333333333333333

Norma. Iloczyn skalarny. Test

444444444444444444444444444444444444444444444444444444444444444

Ciągi i szeregi funkcyjne. Szereg Taylora. Test

Dany jest ciąg funkcyjny {fn} gdzie Parser nie mógł rozpoznać (błąd składni): {\displaystyle f_n(x)= \left\{ \begin{array} {lll} 1 & \text{dla} & x\in[n,n+1]\\ 0 & \text{dla} & x\in \mathbb{R}\setminus[n,n+1] \end{array} \right} dla n Ciąg ten jest

zbieżny punktowo do f(x)0

zbieżny jednostajnie do f(x)0

zbieżny punktowo do funkcji Parser nie mógł rozpoznać (błąd składni): {\displaystyle f(x)= \left\{ \begin{array} {lll} 1 & \text{dla} & x\geq 1\\ 0 & \text{dla} & x<0 \end{array} \right}

 tak, nie, nie

Dany jest ciąg funkcyjny {fn} gdzie

fn(x)={1nx1+nxdlax>02nx2+nxdlax<00dlax=0 dla  n=1,2,

Ten ciąg funkcyjny jest

zbieżny jednostajnie

zbieżny punktowo ale nie jednostajnie

rozbieżny

 nie, tak, nie

Dany jest ciąg funkcyjny fn(x)=xn dla x0 Ten ciąg

jest zbieżny punktowo i jego granica jest ciągła

jest zbieżny jednostajnie i jego granica jest ciągła

jest zbieżny punktowo i jego granica nie jest ciągła

 nie, nie, tak

Dany jest szereg n=1sinnx2n(x2+1), x Ten szereg jest

zbieżny jednostajnie do funkcji f(x)0

zbieżny jednostajnie do funkcji f takiej, że 0<f(x)<3

zbieżny jednostajnie do funkcji f(x)=12(x2+1)

 nie, tak, nie

Funkcja f(x):=n=1xnn(n+1)(x2+1) Granica limx3f(x) wynosi

110

3

0

 tak, nie, nie

Szereg n=11n(x4+4) jest

zbieżny punktowo

zbieżny jednostajnie

rozbieżny

 nie, nie, tak

Czwarty z kolei wyraz rozwinięcia w szereg Maclaurina funkcji f(x)=cos2x to

266!

266!x6

445x6

 nie, nie, tak

Szósty z kolei wyraz rozwinięcia w szereg Taylora funkcji f(x)=12+x o środku w x0=0 wynosi

164x6

164x5

12x6

 nie, tak, nie

Sumujemy cztery kolejne wyrazy rozwinięcia w szereg Taylora funkcji x ośrodku w x0=1 Współczynnik przy x wynosi

1516

516

116

 tak, nie, nie

5555555555555555555555555555555555555555555555555555

Szereg potęgowy. Trygonometryczny szereg Fouriera. Test

101010101010101010101010101010101010101010101010101010101010

Wielowymiarowa całka Riemanna. Test

1111111111111111111111111111111111111111111111111111

Twierdzenie Fubiniego. Twierdzenie o zmianie zmiennych. Test

1212121212121212121212121212121212121212121212121212121212

Całki krzywoliniowe. Twierdzenie Greena. Test

1414141414141414141414141414141414141414141414141414

Równania różniczkowe zwyczajne -- przegląd metod rozwiązywania. Test