Zdefiniujmy teraz relacje na zmiennych wektorowych v C l o c k i [ i ] {\displaystyle vClock_{i}[i]} i v C l o c k i [ i ] {\displaystyle vClock_{i}[i]} , reprezentujących tablice [1.. n], w następujący sposób: v C l o c k i = v C l o c k j ⇔ ∀ k v C l o c k i [ k ] = v C l o c k j [ k ] {\displaystyle vClock_{i}=vClock_{j}\Leftrightarrow \forall kvClock_{i}[k]=vClock_{j}[k]}
v C l o c k i ≠ v C l o c k j ⇔ ∃ k v C l o c k i [ k ] ≠ v C l o c k j [ k ] {\displaystyle vClock_{i}\neq vClock_{j}\Leftrightarrow \exists kvClock_{i}[k]\neq vClock_{j}[k]}
v C l o c k i ≤ v C l o c k j ⇔ ∀ k v C l o c k i [ k ] ≤ v C l o c k j [ k ] {\displaystyle vClock_{i}\leq vClock_{j}\Leftrightarrow \forall kvClock_{i}[k]\leq vClock_{j}[k]}
v C l o c k i ≰ v C l o c k j ⇔ ∃ k v C l o c k i [ k ] ≥ v C l o c k j [ k ] {\displaystyle vClock_{i}\nleq vClock_{j}\Leftrightarrow \exists kvClock_{i}[k]\geq vClock_{j}[k]}
v C l o c k i < v C l o c k j ⇔ ∀ k v C l o c k i [ k ] ≤ v C l o c k j [ k ] ∧ v C l o c k i ≠ v C l o c k j {\displaystyle vClock_{i}<vClock_{j}\Leftrightarrow \forall kvClock_{i}[k]\leq vClock_{j}[k]\land vClock_{i}\neq vClock_{j}}
v C l o c k i ≮ v C l o c k j ⇔ ¬ ( ∀ k v C l o c k i [ k ] ≤ v C l o c k j [ k ] ∧ v C l o c k i ≠ v C l o c k j ) {\displaystyle vClock_{i}\nless vClock_{j}\Leftrightarrow \neg (\forall kvClock_{i}[k]\leq vClock_{j}[k]\land vClock_{i}\neq vClock_{j})}
v C l o c k i | | v C l o c k j ⇔ v C l o c k i ≮ v C l o c k j ∧ v C l o c k j ≮ v C l o c k i {\displaystyle vClock_{i}||vClock_{j}\Leftrightarrow vClock_{i}\nless vClock_{j}\land vClock_{j}\nless vClock_{i}}
<< Poprzedni slajd | Spis treści | Następny slajd >>