Matematyka dyskretna 1/Ćwiczenia 6: Permutacje i podziały
Permutacje i Podziały
Ćwiczenie 1
Policz średnią liczbę cykli w permutacji zbioru elementowego.
Ćwiczenie 2
Oblicz postać zwartą symbolu .
Ćwiczenie 3
Udowodnij wzór na odwracanie liczb Stirlinga, czyli że dla dowolnych funkcji określonych na zachodzi:
wtedy i tylko wtedy, gdy
Ćwiczenie 4
Posługując się interpretacją kombinatoryczną pokaż, że
Ćwiczenie 5
Posługując się interpretacją kombinatoryczną pokaż, że
Ćwiczenie 6
Posługując się interpretacją kombinatoryczną pokaż, że
Ćwiczenie 7
Posługując się interpretacją kombinatoryczną pokaż, że
Ćwiczenie 8
Posługując się interpretacją kombinatoryczną pokaż, że
Ćwiczenie 9
Podział liczby na sumę jest symetryczny, jeśli odwracając jego diagram Ferrersa o stopni otrzymamy ten sam diagram.
Przykład
- jest podziałem symetrycznym .
- nie jest podziałem symetrycznym .
Pokaż, że liczba podziałów symetrycznych liczby pokrywa się z liczbą podziałów liczby na różne i nieparzyste składniki.