Analiza matematyczna 2/Wykład 9: Twierdzenie o funkcjach uwikłanych. Ekstrema warunkowe

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania

Twierdzenie o funkcjach uwikłanych.

Rozważamy funkcje zadane niejawnie. Formułujemy twierdzenie o funkcji uwikłanej i przedstawiamy metody badania takiej funkcji. Podajemy metodę mnożników Lagrange'a badania ekstremów warunkowych funkcji wielu zmiennych.

Punkty regularne poziomicy

Niech X,Y,Z będą przestrzeniami Banacha i niech UX×Y będzie zbiorem otwartym. Rozważmy funkcję

F:X×YU(x,y)F(x,y)Z

oraz jej poziomicę zerową tj. zbiór

{F=0}={(x,y)U:F(x,y)=0}

Ustalmy pewien punkt P=(a,b){F=0}, aX, bY, na tej poziomicy.

Definicja 9.1.

Mówimy, że punkt P{F=0} jest punktem regularnym zbioru {F=0}, jeśli różniczka dPF jest suriekcją przestrzeni X×Y na przestrzeń Z. Punkt poziomicy {F=0}, który nie jest regularny, będziemy nazywać punktem nieregularnym tej poziomicy.

Przypomnijmy fakt z algebry liniowej:

Uwaga 9.2.

W przypadku przestrzeni o skończonym wymiarze X=n, Y=m odwzorowanie liniowe L:X×YY jest suriekcją wtedy i tylko wtedy, gdy rząd (macierzy) odwzorowania L jest maksymalny, tj. równy m.

Przykład 9.3.

Niech X=Y=. Rozważmy F(x,y)=x2+y21 i poziomicę zerową tej funkcji

{F=0}={x2+y2=1},

czyli okrąg o środku w punkcie (0,0) i promieniu jednostkowym. Różniczka

d(x0,y0)F=Fx(x0,y)dx+Fy(x0,y)dy=2x0dx+2y0dy

w dowolnym punkcie (x0,y0){F=0} ma rząd maksymalny. Rząd różniczki d(x0,y0)F nie jest maksymalny tylko w punkcie, w którym obie pochodne cząstkowe Fx, Fy zerują się, czyli gdy

{2x0=02y0=0,

ale punkt (0,0) nie leży na okręgu {F=0}.

Przykład 9.4.

Niech X=Y= i niech F(x,y)=x3+y33xy. Pamiętamy, że poziomicą zerową tej funkcji

{F=0}={x3+y3=3xy}

jest krzywa, którą nazywamy liściem Kartezjusza. Zauważmy, że różniczka

d(x0,y0)F=3(x02y0)dx+3(y02x0)dy
nie ma maksymalnego rzędu, gdy
{x02y0=0y02x0=0,

czyli w punktach (0,0) i (1,1). Stąd punkt (0,0) jest punktem nieregularnym

liścia Kartezjusza. Drugi punkt (1,1) nie leży na poziomicy {F=0}.

Przykład 9.5.

Niech X=Y= i niech F(x,y)=(x2+y2)22(x2y2). Poziomicę zerową tej funkcji już także poznaliśmy. Krzywą

{F=0}={(x2+y2)2=2(x2y2)}

nazywamy lemniskatą Bernoullego. Różniczka

d(x0,y0)F=(2(x02+y02)2x04x0)dx+(2(x02+y02)2y0+4y0)dy=4x0(x02+y021)dx+4y0(x02+y02+1)dy

nie ma maksymalnego rzędu tylko wtedy, gdy

{x0(x02+y021)=0y0(x02+y02+1)=0,

czyli w trzech punktach (0,0), (1,0) i (1,0), spośród których tylko pierwszy (0,0) leży na lemniskacie Bernoullego. Nie jest więc jej punktem regularnym.

Przykład 9.6.

Poziomicą zerową funkcji

F:3(x,y,z)F(x,y,z)=x2+y2+z21

jest sfera o środku w początku układu współrzędnych (0,0,0) i promieniu jednostkowym:

{F=0}={(x,y,z):x2+y2+z2=1}

Różniczka odwzorowania F dana wzorem

d(x,y,z)F=Fx(x,y,z)dx+Fy(x,y,z)dy+Fz(x,y,z)dz=2xdx+2ydy+2zdz

jest odwzorowaniem liniowym i ciągłym z 3 do i ma rząd maksymalny (równy 1) we wszystkich punktach 3 poza początkiem układu współrzędnych (0,0,0), w którym rząd ten wynosi zero. Punkt (0,0,0) nie należy jednak do sfery {F=0}, stąd każdy jej punkt jest regularny.

Przykład 9.7.

Niech F:3(x,y,z)F(x,y,z)=(x2+z21,y2+z21)2. Wówczas poziomicą zerową funkcji F jest zbiór

{F=0}={(x,y,z)3,x2+z2=1,y2+z2=1},

który powstaje z przecięcia walca x2+z2=1 o osi obrotu OY z walcem y2+z2=1 o osi obrotu OX. Zauważmy, że różniczka

d(x,y,z)F=(2xdx+0dy+2zdz,0dx+2ydy+2zdz)

jest odwzorowaniem liniowym i ciągłym z 3 do 2. Jest więc maksymalnego rzędu, gdy rząd macierzy jej współczynników

A=[2x02z02y2z]

wynosi 2. Zauważmy, że rząd macierzy A wynosi zero, gdy x=y=z=0 (punkt (0,0,0) nie należy do poziomicy zerowej {F=0}). Z kolei, rząd tej macierzy wynosi jeden, gdy

x=y=0,z0lubx=z=0,y0luby=z=0,x0,

co ma miejsce w dwóch punktach poziomicy {F=0}, a mianowicie w punktach (0,0,1) oraz (0,0,1). Są to jedyne punkty poziomicy, które nie są regularne, gdyż rząd różniczki d(x,y,z)F w pozostałych punktach poziomicy jest maksymalny (tj. wynosi 2).
wykres

Przykład 9.8.

Niech F:3(x,y,z)F(x,y,z)=(x2+y2+z2)23xyz. Poziomicą zerową tej funkcji jest powierzchnia o równaniu

{(x,y,z)={(x,y,z)3:(x2+y2+z2)2=3xyz}

Różniczka d(x,y,z)F=Fxdx+Fydy+Fzdz jest odwzorowaniem liniowym i ciągłym z 3 do , nie ma więc rzędu maksymalnego w punktach (x,y,z), w których rząd różniczki jest niższy niż jeden, czyli w punktach, w których zerują się wszystkie trzy pochodne cząstkowe Fx=0,Fy=0,Fz=0, tzn. gdy

{4x(x2+y2+z2)=3yz4y(x2+y2+z2)=3xz4z(x2+y2+z2)=3xy.

Układ ten spełnia punkt o współrzędnych (0,0,0), a także punkty o współrzędnych (x,y,z), które spełniają układ

{x2=y2y2=z2z2=x2,

czyli |x|=|y|=|z|. Spośród punktów poziomicy {F=0} warunek ten spełniają poza punktem (0,0,0) także punkty (a,a,a), (a,a,a), (a,a,a), (a,a,a), gdzie a=13. Poza wskazanymi pięcioma punktami poziomicy {F=0} pozostałe punkty są regularne, gdyż różniczka odwzorowania F ma w nich rząd maksymalny (równy 1).


<applet code="JavaviewModApplet.class" archive="images/a/a0/Javaview.jar,images/b/be/JavaviewModApplet.jar" width="450" height="400">

   <param name="colors" value="-1:#7e0b9f -0.80:#ce3bf8 -0.60:#2c4ae5 -0.40:#2c85e5 -0.20:#2ecca9 -0.05:#2ecc5b 0.05:#2ecc5b 0.20:#97cc2e 0.40:#edff27 0.60:#ffba27 0.80:#ff6e27 1:#d42525">
   <param name="coloring" value="maple">
   <param name="model" value="images/e/ec/Am2w09.0010.mgs.zip">
   <param name="scale" value="1.0 1.0 1.0">

<param name="shading" value="0.2"> </applet>

<div.thumbcaption>Poziomica zerowa funkcji f(x,y,z)=(x2+y2+z2)23xyz


Twierdzenie o funkcji uwikłanej

Niech X, Y będą przestrzeniami Banacha i niech F:UY będzie funkcją różniczkowalną w zbiorze otwartym UX×Y. Niech (a,b){F=0} będzie punktem poziomicy zerowej funkcji F, gdzie aX,bY. Powstaje naturalne pytanie o warunki, przy których poziomicę {F=0} w otoczeniu punktu (a,b) można przedstawić jako wykres pewnej funkcji f:XY takiej, że F(x,f(x))=0 w pewnym otoczeniu otwartym punktu aX.

Rozważmy dwa proste przykłady.

Przykład 9.9.

Niech (a,b) będzie punktem okręgu x2+y2=1, który stanowi poziomicę zerową funkcji

×(x,y)F(x,y)=x2+y21

Jeśli b>0, to w otoczeniu punktu a(1,1) można określić funkcję

f1:xf1(x)=1x2

taką, że

F(x,f1(x))=x2+(1x2)21=0  oraz  f1(a)=b

Z kolei, jeśli b<0, to w otoczeniu punktu a(1,1) znajdziemy funkcję

f2:xf2(x)=1x2

taką, że

F(x,f2(x))=x2+(1x2)21=0  oraz f2(a)=b

Jedynymi punktami (a,b) okręgu x2+y2=1, w otoczeniu których nie znajdziemy funkcji f:xf(x) takiej, że f(a)=b i F(x,f(x))=0, są punkty (1,0) oraz

(1,0). Zauważmy, że w punktach tych zeruje się pochodna cząstkowa Fy.

Przykład 9.10.

Niech a=(a1,a2)2, b. Niech (a,b)3 będzie punktem sfery x12+x22+z2=1, która stanowi poziomicę zerową funkcji F(x1,x2,z)=x12+x22+z21. Jeśli b>0, to w otoczeniu punktu a=(a1,a2) wewnątrz okręgu x12+x22<1 można określić funkcję

f1:(x1,x2)f1(x1,x2)=1x12x22

taką, że

F(x1,x2,f1(x1,x2))=x12+x22+(1x12x22)21=0  oraz  f1(a)=b

Z kolei, jeśli b<0 znajdziemy funkcję

f2:(x1,x2)f1(x1,x2)=1x12x22

taką, że

F(x1,x2,f2(x1,x2))=x12+x22+(1x12x22)21=0  oraz f2(a)=b

Jedynymi punktami (a,b) sfery x12+x22+z2=1, w otoczeniu których nie znajdziemy funkcji f:(x1,x2)f(x1,x2) takiej, że f(a)=b i F(x1,x2,f(x1,x2))=0, są punkty okręgu x12+x22=1 zawartego w płaszczyźnie z=0. Zauważmy, że w punktach tych zeruje się pochodna cząstkowa Fz=2z.

Uogólnijmy to spostrzeżenie, formułując

Twierdzenie 9.11.[twierdzenie o funkcji uwikłanej]

Niech F:UY będzie funkcją różniczkowalną o ciągłej różniczce na zbiorze otwartym UX×Y. Niech (a,b){F=0} (gdzie aX,bY) będzie punktem poziomicy zerowej funkcji F takim, że zacieśnienie różniczki d(a,b)F|Y do podprzestrzeni YX×Y jest izomorfizmem. Wówczas

1) istnieje pewne otoczenie otwarte VX punktu a oraz istnieje dokładnie jedna funkcja określona w tym otoczeniu f:VY taka, że f(a)=b oraz F(x,f(x))=0 dla dowolnego xV. Ponadto

2) funkcja f jest różniczkowalna i ma ciągłą różniczkę w zbiorze

V daną wzorem
dxf=(d(x,y)F|Y)1(d(x,y)F|X),
gdzie y=f(x), natomiast

d(x,y)F|X oznacza zacieśnienie różniczki d(x,y)F do podprzestrzeni XX×Y a (d(x,y)F|Y)1 jest izomorfizmem odwrotnym do zacieśnienia różniczki d(x,y)F|Y.

Dowód 9.11.

[Szkic] Pominiemy dowód istnienia funkcji f. Wyprowadzimy jednak wzór, który określa jej różniczkę, w trzech przypadkach najczęściej spotykanych w konkretnych zastosowaniach. Przypomnijmy

wpierw jednak, że
Uwaga 9.12.

Jeśli Y=n, to odwzorowanie liniowe L:YY jest izomorfizmem wtedy i tylko wtedy, gdy wyznacznik tego odwzorowania jest różny od zera, tj. detL0.

Przypadek I. Niech X=Y= i niech F:2(x,y)F(x,y). Jeśli funkcja f: spełnia równanie F(x,f(x))=0, to przy założeniu, że jest różniczkowalna, na mocy twierdzenia o różniczce złożenia funkcji otrzymamy równość

0=ddxF(x,f(x))=Fx(x,y)+Fy(x,y)dfdx(x), gdzie y=f(x)

Stąd

Fx(x,y)=,Fy(x,y)dfdx(x)

Z założenia zacieśnienie różniczki d(x,y)F|Y jest izomorfizmem przestrzeni do , co oznacza w tym przypadku, że pochodna cząstkowa Fy0. Stąd pochodna funkcji uwikłanej wyraża się wzorem

dfdx(x)=(Fy(x,y))1Fx(x,y), gdzie y=f(x)

Przypadek II. Niech F:3(x1,x2,y)F(x1,x2,y). Jeśli funkcja f:2 spełnia równanie F(x1,x2,f(x1,x2))=0, to przy założeniu, że jest różniczkowalna, na mocy twierdzenia o różniczce złożenia funkcji otrzymamy równość prawdziwą w punktach (x1,x2,y) poziomicy {F=0}

0=x1F(x1,x2,f(x1,x2))=Fx1x1x1+Fx2x2x1+Fyfx1=Fx1+0+Fyfx1

oraz

0=x2F(x1,x2,f(x1,x2))=Fx1x1x2+Fx2x2x2+Fyfx2=0+Fx2+Fyfx2

Izomorficzność zawężenia różniczki d(x1,x2,y)F|Y również w tym przypadku oznacza po prostu, że pochodna cząstkowa Fy(x1,x2,y)0. Wówczas z powyższych równości dostajemy

fx1(x1,x2)=(Fy(x1,x2,y))1Fx1(x1,x2,y)

oraz

fx2(x1,x2)=(Fy(x1,x2,y))1Fx2(x1,x2,y),

gdzie y=f(x1,x2). Pomijając argument w zapisie pochodnych cząstkowych, można te wzory podać w skróconej formie (łatwiejszej do zapamiętania):

fx1=(Fy)1Fx1

oraz

fx2=(Fy)1Fx2

Przypadek III. Niech X=, Y=2 i niech

F:×2(x,y1,y2)F(x,y1,y2)=(F1(x,y1,y2),F2(x,y1,y2))2

Załóżmy, że istnieje funkcja różniczkowalna

f:x(f1(x),f2(x))2

taka, że

0=F(x,f(x))=(F1(x,f1(x),f2(x)), F2(x,f1(x),f2(x))),

to znaczy

{0=F1(x,f1(x),f2(x))0=F1(x,f1(x),f2(x)).

Stąd - korzystając z twierdzenia o różniczkowaniu złożenia funkcji - dostajemy

0=ddxF1(x,f1(x),f2(x))=F1xdxdx+F1y1df1dx+F1y2df2dx=F1x+F1y1f1+F1y2f2

oraz

0=ddxF2(x,f1(x),f2(x))=F2xdxdx+F2y1df1dx+F2y2df2dx=F2x+F2y1f1+F2y2f2.

Otrzymujemy układ dwóch równań z niewiadomymi f1, f2, które są pochodnymi składowych funkcji uwikłanej f=(f1,f2):

{F1x=F1y1f1+F1y2f2F2x=F2y1f1+F2y2f2.

Zapiszmy ten układ w formie macierzowej

[F1xF2x]=[F1y1F1y2F2y1F2y2][f1f2]

W rozważanym przypadku założenie o izomorficzności zacieśnienia różniczki d(x,y)F do podprzestrzeni YX×Y oznacza po prostu fakt, że macierz pochodnych cząstkowych, która reprezentuje d(x,y)F|Y:

[F1y1F1y2F2y1F2y2]

jest nieosobliwa, tj. jej wyznacznik jest różny od zera. Z kolei macierz kolumnowa

[F1xF2x]

reprezentuje zacieśnienie różniczki d(x,y)F do podprzestrzeni XX×Y. Macierz niewiadomych f1, f2:

[f1f2]

reprezentuje różniczkę dxf funkcji uwikłanej f=(f1,f2). Stąd układ równań z niewiadomymi f1, f2 przedstawia równanie

d(x,y)F|X=d(x,y)F|Ydxf,      gdzie y=f(x),

w którym niewiadomą jest różniczka dxf. Izomorficzność zacieśnienia d(x,y)F|Y gwarantuje istnienie odwzorowania odwrotnego (d(x,y)F|Y)1, dzięki czemu otrzymujemy

dxf=(d(x,y)F|Y)1d(x,y)F|X

W języku algebry nieosobliwość macierzy

[F1y1F1y2F2y1F2y2]

gwarantuje istnienie macierzy do niej odwrotnej. Stąd rozwiązaniem równania

[F1xF2x]=[F1y1F1y2F2y1F2y2][f1f2]

jest

[f1f2]=([F1y1F1y2F2y1F2y2])1[F1xF2x]

lub równoważnie:

dxf=(d(x,y)F|Y)1d(x,y)F|X

Ekstrema funkcji uwikłanej

Niech X=n,Y= i niech

F:X×(x1,x2,,xn,y)F(x1,x2,,xn,y)

będzie funkcją określoną w pewnym zbiorze otwartym UX×.

Zauważmy, że do wyznaczenia różniczki funkcji f uwikłanej równaniem F(x,f(x))=0 nie potrzebujemy znać jawnej postaci funkcji f. Co więcej, potrafimy wyznaczyć punkty, w których funkcja f może osiągać ekstrema, korzystając ze znanego warunku koniecznego istnienia ekstremum.

Twierdzenie 9.13.[warunek konieczny istnienia ekstremum funkcji uwikłanej]

Jeśli funkcja f uwikłana równaniem F(x,f(x))=0 osiąga ekstremum w pewnym punkcie aX takim, że pochodna cząstkowa Fy(a,f(a))0, to w punkcie (a,f(a)) zerują się pochodne cząstkowe funkcji F po zmiennych x1,x2,,xn, tzn.

i{1,2,,n}  Fxi(a,f(a))=0

Dowód

Warunek ten jest konsekwencją wzoru na różniczkę funkcji f, który stanowi tezę twierdzenia o funkcji uwikłanej. Ponieważ zachodzi równość

dxf=(d(x,y)F|Y)1d(x,y)F|X,

to wobec izomorficzności d(x,y)F|Y która w tym przypadku jest równoważna stwierdzeniu, że Fy(x,y)0) różniczka daf zeruje się wtedy i tylko wtedy, gdy d(a,f(a))F|X=0. Warunek ten jest z kolei równoważny zerowaniu się w punkcie (a,f(a)) pochodnych cząstkowych funkcji F po zmiennych x1,x2,,xn, czyli

{Fx1(a,f(a))=0Fx2(a,f(a))=0Fxn(a,f(a))=0.

Wyznaczymy również drugą różniczkę funkcji uwikłanej f, aby z jej określoności wywnioskować, czy funkcja f osiąga maksimum, minimum, czy też w ogóle nie osiąga ekstremum w punktach, które spełniają warunek konieczny istnienia ekstremum.

Rozważmy dwa najczęściej spotykane przypadki:

Przypadek I. Niech F:2 będzie funkcją dwukrotnie różniczkowalną. Rozważmy funkcję f uwikłaną równaniem F(x,f(x))=0. Różniczkując tę równość po zmiennej x, otrzymamy (na podstawie twierdzenia o różniczkowaniu złożenia) równość

0=Fx+Fyf

Różniczkując względem zmiennej x powtórnie obie strony powyższej nierówności, otrzymamy

0=ddx(Fx+Fyf)=ddx(Fx)+ddx(Fyf)=ddx(Fx)+ddx(Fy)f+Fyf=2Fx2+2Fyxf+(2Fxy+2Fy2f)f+Fyf.

Otrzymane wyrażenie znacznie upraszcza się w punkcie x0, w którym f(x0)=0. Otrzymamy wówczas równość

0=2Fx2(x0,y0)+Fy(x0,y0)f(x0),

z której - wobec założenia, że Fy(x0,y0)0 - otrzymamy

f(x0)=(Fy(x0,y0))12Fx2(x0,y0),

gdzie y0=f(x0).

Przypadek II. Niech f:2 będzie funkcją uwikłaną równaniem F(x,y,f(x,y))=0, gdzie F:3 jest funkcją dwukrotnie różniczkowalną. Wówczas w punktach poziomicy {F=0} otrzymamy równości zawierające pochodne cząstkowe fx oraz fy:

0=Fx+Fzfx
0=Fy+Fzfy.

Policzymy pochodną cząstkową x po zmiennej x obu stron pierwszej z tych równości. Ze wzorów na pochodną złożenia funkcji wyznaczymy wpierw:

x(Fx)=2Fx2+2Fzxfx

oraz

x(Fz)=2Fxz+2Fz2fx

Wobec tego

0=x(Fx+Fzfx)=x(Fx)+x(Fzfx)=x(Fx)+x(Fz)fx+Fz2fx2=2Fx2+2Fzxfx+(2Fxz+2Fz2fx)fx+Fz2fx2.

W punkcie (x0,y0), w którym zeruje się różniczka funkcji uwikłanej, mamy fx(x0,y0)=0, fy(x0,y0)=0, a powyższy wzór upraszcza się i przyjmuje postać:

0=2Fx2(x0,y0,z0)+Fz(x0,y0,z0)2fx2(x0,y0),

gdzie z0=f(x0,y0). W podobny sposób dostajemy równości zawierające pozostałe pochodne cząstkowe rzędu drugiego funkcji uwikłanej f, które przy założeniu zerowania się różniczki funkcji uwikłanej w punkcie (x0,y0) przyjmują postać:

0=2Fxy(x0,y0,z0)+Fz(x0,y0,z0)2fxy(x0,y0),
0=2Fyx(x0,y0,z0)+Fz(x0,y0,z0)2fyx(x0,y0),
0=2Fy2(x0,y0,z0)+Fz(x0,y0,z0)2fy2(x0,y0)

Stąd - wobec założenia, że Fz(x0,y0,z0)0 - otrzymujemy:

[2fx2(x0,y0) 2fxy(x0,y0)2fyx(x0,y0) 2fy2(x0,y0)]=(Fz(x0,y0,z0))1[2Fx2(x0,y0,z0) 2Fxy(x0,y0,z0)2Fyx(x0,y0,z0)  2Fy2(x0,y0,z0)]

W podobny sposób (szczegółowe rachunki pomijamy) można wykazać ogólny wzór wyrażający drugą różniczkę funkcji uwikłanej.

Wniosek 9.14.

Niech f:xf(x), x=(x1,x2,,xn) będzie funkcją uwikłaną równaniem F(x,f(x))=0, gdzie F:n×(x,y)F(x,y) jest funkcją dwukrotnie różniczkowalną w pewnym otoczeniu punktu (a,b), gdzie b=f(a). Niech Fy(a,b)0 i niech różniczka daf=0. Wówczas druga różniczka funkcji uwikłanej f w punkcie a wynosi

da2f=(Fy(a,b))1d(a,b)F|X,
czyli
2fxixj(a)=(Fy(a,b))12Fxixj(a,b),
dla dowolnych i,j{1,2,,n}.

Przykład 9.15.

Wyznaczmy ekstrema funkcji f danej w postaci uwikłanej F(x,y,f(x,y))=0, gdzie

F(x,y,z)=(x2+y2+z2)23xyz

Obserwacja poziomicy zerowej {F=0} każe przypuszczać, że w otoczeniu czterech punktów tej poziomicy da się wskazać otoczenia ich rzutów na płaszczyznę zmiennych (x,y) oraz jednoznacznie określone funkcje w tych otoczeniach takie, że dwie z nich będą osiągać maksima, a pozostałe dwie - minima.

Zgodnie z wykazanymi uwagami, aby wyznaczyć punkty ekstremalne funkcji uwikłanej f szukamy punktów (x,y), których współrzędne spełniają układ równań:

{Fx(x,y,z)=0Fy(x,y,z)=0(x,y,z){F=0} czyli {4x(x2+y2+z2)3yz=04y(x2+y2+z2)3xz=0(x2+y2+z2)23xyz=0.

Możliwość skorzystania z twierdzenia o funkcji uwikłanej (aby mieć gwarancję istnienia funkcji uwikłanej f) wymaga sprawdzenia założenia:

Fz(x,y,z)=4z(x2+y2+z2)3xy0

Nietrudno zauważyć, że początek układu współrzędnych (0,0,0) spełnia układ równań, ale nie spełnia założenia twierdzenia o funkcji uwikłanej, gdyż Fz(0,0,0)=0. Obserwacja poziomicy {F=0} wyraźnie pokazuje, że nie ma możliwości jednoznacznego odwikłania funkcji (x,y)f(x,y) z równania F(x,y,f(x,y))=0 w żadnym otoczeniu punktu (0,0,0). Ponadto układ spełniają cztery punkty o współrzędnych

x=y=3216, z=38,x=y=3216, z=38,x=y=3216, z=38,x=y=3216, z=38,

w których spełniony jest warunek Fz(x,y,z)0. Na mocy twierdzenia o funkcji uwikłanej w pewnych otoczeniach U1,U2,U3,U42 odpowiednio punktów

A1=(3216,3216),A2=(3216,3216),A3=(3216,3216),A4=(3216,3216),

istnieją jedyne funkcje f1:U1, f2:U2, f3:U3, f4:U4, które spełniają warunek

F(x,y,fi(x,y))=0, gdy (x,y)Ui, i{1,2,3,4}

oraz odpowiednio f1(A1)=f2(A2)=38, f3(A3)=f4(A4)=38. Analiza poziomicy {F=0} (lub określoności drugiej różniczki dAi2f, i{1,2,3,4}) pozwala stwierdzić, że funkcje f1 i f2 osiągają w punktach A1, A2 maksimum, zaś f3 i f4 osiągają w punktach A3, A4 minimum.

Dalsze przykłady wyznaczania ekstremów funkcji uwikłanej analizujemy w ramach ćwiczeń.

Ekstrema warunkowe. Metoda mnożników Lagrange'a

Dotychczas wyznaczaliśmy ekstrema funkcji określonej w pewnym otwartym podzbiorze U przestrzeni unormowanej X (przy czym w praktycznych przykładach zajmowaliśmy się przykładami, gdy X=n, n=1,2,3,). Równie ważne z praktycznego punktu widzenia są także rozważania polegające na wyznaczaniu ekstremów funkcji F:X zacieśnionej do zbioru, który nie jest otwarty w X.

Przykład 9.16.

Wyznaczmy najmniejszą i największą wartość funkcji

F(x,y,z)=x2y+2z

na sferze

x2+y2+z2=1

Sfera ta jest zbiorem domkniętym i ograniczonym, jest więc zwarta. Stąd na na mocy twierdzenia Weierstassa o osiąganiu kresów przez funkcję ciągłą wnioskujemy, że wielomian F(x,y,z)=x2y+2z osiąga na tej sferze zarówno wartość najmniejszą, jak i największą. Nasze dotychczasowe doświadczenie podpowiada nam, że zadanie można by sprowadzić do badania funkcji dwóch zmiennych np. poprzez odwikłanie zmiennej

z(x,y)=1x2y2 lub z(x,y)=1x2y2

z równania sfery i zbadania funkcji dwóch zmiennych (x,y) danych w kole x2+y2<1 wzorami:

f1:(x,y)F(x,y,1x2y2)=x2y+21x2y2,
f2:(x,y)F(x,y,1x2y2)=x2y21x2y2

Niezbyt skomplikowane (choć nieco żmudne rachunki) prowadzą do wyznaczenia ekstremów tych funkcji, a co za tym idzie: wartości ekstremalnych funkcji F na danej sferze.

Podamy jednak pewną metodę, która pozwala wyznaczać ekstremum funkcji F:X zacieśnionej do poziomicy zerowej {G=0} pewnej funkcji G:XY również w przypadku, gdy odwikłanie zmiennej z równania G=0 nie jest tak proste jak w podanym przykładzie.

Sprecyzujmy jednak wpierw problem.

Niech X,Y będą przestrzeniami Banacha i niech G:XY, F:X będą funkcjami.

Definicja 9.17.

Mówimy, że funkcja F osiąga ekstremum warunkowe w punkcie a przy warunku a{G=0}, jeśli zacieśnienie funkcji F do poziomicy {G=0} osiąga ekstremum w tym punkcie.

Prawdziwe jest następujące twierdzenie, które stanowi podstawę metody mnożników Lagrange'a.

Niech X,Y będą przestrzeniami Banacha.

Twierdzenie 9.18.

Niech F:X, G:XY będą funkcjami różniczkowalnymi w otoczeniu punktu regularnego a poziomicy {G=0} (co - przypomnijmy - oznacza, że różniczka daG jest suriekcją przestrzeni X na Y). Jeśli funkcja F osiąga ekstremum warunkowe w punkcie regularnym a poziomicy zerowej funkcji G, to istnieje funkcjonał liniowy i ciągły Λ:Y taki, że zachodzi równość daF=ΛdaG.

Prawdziwe jest również twierdzenie, które na podstawie określoności drugiej różniczki pozwala stwierdzić, czy funkcja F osiąga minimum, czy maksimum warunkowe w punkcie a{G=0}.

Twierdzenie 9.19.

Niech F:X, G:XY będą funkcjami dwukrotnie różniczkowalnymi w otoczeniu punktu regularnego a poziomicy {G=0}. Jeśli istnieje funkcjonał liniowy i ciągły Λ:Y taki, że zachodzi równość daF=ΛdaG oraz forma kwadratowa

Xh(da2FΛda2G)(h,h)

jest dodatnio określona (odpowiednio: ujemnie określona) na podprzestrzeni X1:={hX,daG(h)=0} przestrzeni X, to funkcja F osiąga w punkcie a minimum (odpowiednio: maksimum) warunkowe.

Definicja 9.20.

Funkcjonał Λ, który występuje w wypowiedzi obu powyższych twierdzeń, nazywamy funkcjonałem Lagrange'a.

Dowody obu twierdzeń pomijamy (można je znaleźć np. w podręczniku Krzysztofa Maurina, Analiza. Część I. Elementy, Państwowe Wydawnictwo Naukowe, Warszawa 1977). Podamy jednak interpretację tego twierdzenia w kilku najczęściej spotykanych sytuacjach.

Uwaga 9.21.

Jeśli f,g:2 są funkcjami różniczkowalymi, problem znalezienia ekstremum warunkowego funkcji f przy warunku {g=0} sprowadza się do znalezienia punktu a na poziomicy {g=0} oraz stałej λ, która reprezentuje funkcjonał Lagrange'a. Jeśli bowiem ekstremum to jest realizowane, to - zgodnie z podanym twierdzeniem - istnieje funkcjonał liniowy Λ: dany wzorem Λ(x)=λx taki, że różniczka daf=λdag, o ile punkt a jest punktem regularnym poziomicy {g=0}. Przypomnijmy, że w przypadku, gdy g:2, punkt a jest regularny, jeśli rząd różniczki

dag=g(a)xdx+g(a)ydy

wynosi 1. Wystarczy więc sprawdzić, czy w punkcie a różniczka dag0, czyli czy którakolwiek pochodna cząstkowa g(a)x lub g(a)y jest różna od zera. Zagadnienie sprowadza się do znalezienia punktów, w których zeruje się różniczka funkcji pomocniczej

Φ(x,y):=f(x,y)λg(x,y),

gdzie stałą λ (nazywaną tradycyjnie mnożnikiem Lagrange'a) wyznaczamy z układu równań

{d(x,y)Φ=0g(x,y)=0 czyli {fx=λgxfy=λgyg(x,y)=0.
Uwaga 9.22.

Jeśli f,g:3 są funkcjami różniczkowalnymi, problem znalezienia ekstremum warunkowego funkcji f przy warunku {g=0} sprowadza się do znalezienia - podobnie jak w poprzednim przypadku - punktu a na poziomicy {g=0} oraz stałej λ, która reprezentuje funkcjonał Lagrange'a. Jeśli bowiem ekstremum to jest realizowane to - zgodnie z podanym twierdzeniem - istnieje funkcjonał liniowy Λ: dany wzorem Λ(x)=λx, taki, że różniczka daf=λdag, o ile punkt a jest punktem regularnym poziomicy {g=0}. Przypomnijmy, że w przypadku, gdy g:3 punkt a jest regularny, jeśli rząd dag (odwzorowania liniowego z 3 do ) jest maksymalny, czyli wynosi 1. Wystarczy więc sprawdzić, czy w punkcie a różniczka

dag=g(a)xdx+g(a)ydy+g(a)zdz

nie zeruje się, czyli czy któraś z pochodnych cząstkowych g(a)x, g(a)y, g(a)z jest różna od zera. Zagadnienie można sprowadzić do znalezienia punktów, w których zeruje się różniczka funkcji pomocniczej

Φ(x,y,z):=f(x,y,z)λg(x,y,z),

gdzie stałą λ wyznaczamy z układu równań

{d(x,y,z)Φ=0g(x,y,z)=0 czyli {fx=λgxfy=λgyfz=λgzg(x,y,z)=0.

Przykład 9.23.

Powróćmy do zadania polegającego na wyznaczeniu najmniejszej i największej wartości funkcji f(x,y,z)=x2y+2z na sferze x2+y2+z2=1. Rozwiążemy je metodą mnożników Lagrange'a opisaną w poprzednich uwagach. Dana sfera jest poziomicą zerową funkcji g(x,y,z)=x2+y2+z21. Wykazaliśmy już, że każdy punkt sfery jest regularny. Niech Φ(x,y,z)=f(x,y,z)λg(x,y,z). Rozwiązujemy układ równań

{fx=λgxfy=λgyfz=λgzg(x,y,z)=0 czyli {1=2λx2=2λy2=2λzx2+y2+z2=1.

Układ ten spełniają liczby

x=13,y=23,z=23,λ=32

oraz

x=13,y=23,z=23,λ=32

Ponieważ sfera jest zbiorem zwartym, wystarczy wyznaczyć wartości funkcji w obu punktach i porównać je, gdyż zgodnie z twierdzeniem Weierstrassa o osiąganiu kresów przez funkcję ciągłą na zbiorze zwartym, w jednym z tych dwóch punktów funkcja f musi osiągać kres dolny, a w drugim kres górny wartości na sferze {g=0}. Mamy

f(13,23,23)=3,  f(13,23,23)=3,

czyli f osiąga w pierwszym z tych punktów wartość najmniejszą równą 3, a w drugim punkcie - wartość największą na sferze równą 3.

Uwaga 9.24.

Jeśli funkcja F:3, zaś G:32, zagadnienie znalezienia ekstremów warunkowych funkcji F przy warunku {G=0} sprowadza się do znalezienia punktów zbioru {G=0}, w których zeruje się różniczka funkcji Φ(x,y,z):=F(x,y,z)ΛG(x,y,z). Funkcjonał Lagrange'a Λ w tym przypadku jest odwzorowaniem liniowym z 2, jest więc reprezentowany przez macierz złożoną z dwóch liczb: λ1, λ2. Funkcja G=(g1,g2) jest zestawieniem dwóch funkcji g1,g2 o wartościach rzeczywistych, stąd

Φ(x,y,z)=F(x,y,z)ΛG(x,y,z)=F(x,y,z)λ1g1(x,y,z)λ2g2(x,y,z)

Metoda mnożników Lagrange'a sprowadza się więc do znalezienia rozwiązań układu równań

{d(x,y,z)Φ=0G(x,y,z)=0 czyli {Fx=λ1g1x+λ2g2xFy=λ1g1y+λ2g2yFz=λ1g1z+λ2g2zg1(x,y,z)=0g2(x,y,z)=0

w punktach regularnych poziomicy {G=0}, czyli tych, w których rząd różniczki d(x,y,z)G jest maksymalny (tj. równy 2, gdyż różniczka d(x,y,z)G jest odwzorowaniem liniowym z 3 do 2). Zwróćmy uwagę, że funkcja F może osiągać ekstremum w punktach, które należą do poziomicy {G=0} a nie są regularne. Metoda mnożników Lagrange'a nie rozstrzyga w tym przypadku o istnieniu ekstremum.

Przykład 9.25.

Wyznaczmy najmniejszą i największą wartość funkcji

F(x,y,z)=xy2z

na przecięciu się dwóch walców

x2+z2=1,  y2+z2=1

Zauważmy, że każdy z walców z osobna nie jest zbiorem zwartym, gdyż nie jest ograniczony, lecz ich przecięcie jest zbiorem zwartym (gdyż jest zbiorem domkniętym i ograniczonym, zawartym między innymi w sześcianie [1,1]×[1,1]×[1,1]). Podany warunek można opisać za pomocą poziomicy zerowej funkcji G(x,y,z)=(x2+z21,y2+z21). Zbadaliśmy już, że spośród punktów poziomicy {G=0} tylko dwa nie są regularne: (0,0,1) oraz (0,0,1). Poza tymi dwoma punktami możemy zastosować metodę mnożników Lagrange'a, która sprowadza się do wyznaczenia rozwiązań układu równań:

{Fx=λ1g1x+λ2g2xFy=λ1g1y+λ2g2yfz=λ1g1z+λ2g2zg1(x,y,z)=0g2(x,y,z)=0 czyli {1=2λ1x1=2λ2y2=2(λ1+λ2)zx2+z21=0y2+z21=0.

Układ ten ma dwa rozwiązania

x=y=z=22, przy czym λ1=λ2=22

oraz

x=y=z=22, przy czym λ1=λ2=22

Wartość funkcji F w tych punktach wynosi

F(22,22,22)=22 oraz F(22,22,22)=22

W obu punktach nieregularnych poziomicy {G=0} mamy

F(0,0,1)=2 oraz F(0,0,1)=2

Po porównaniu tych wartości: 22<2<2<22 stwierdzamy, że największą wartość na na poziomicy {G=0} równą 22 funkcja F osiąga w punkcie (22,22,22), a najmniejszą, równą 22, w punkcie (22,22,22).