Matematyka dyskretna 1/Ćwiczenia 7: Funkcje tworzące

Z Studia Informatyczne
Wersja z dnia 10:05, 5 wrz 2023 autorstwa Luki (dyskusja | edycje) (Zastępowanie tekstu – „ </math>” na „</math>”)
Przejdź do nawigacjiPrzejdź do wyszukiwania

Funkcje tworzące

Ćwiczenie 1

Policz funkcję tworzącą następujących ciągów:

a. an=2n ,
b. bn=2n+3 ,
c. cn=1n dla n1 , oraz c0=0 ,
d. dn=1+12+13++1n .
Wskazówka
Rozwiązanie

Ćwiczenie 2

Policz funkcję tworzącą ciągu an=1n! .

Wskazówka
Rozwiązanie

Ćwiczenie 3

Pokaż, że dla liczby naturalnej m zachodzi


1(1x)m+1=n=0(m+nn)xn


Wskazówka
Rozwiązanie

Ćwiczenie 4

Przedstaw funkcję


G(x)=1+2x6x213x2x2+2x3


w postaci szeregu funkcyjnego.

Wskazówka
Rozwiązanie

Ćwiczenie 5

Rozwiąż równanie rekurencyjne:


{a0=0,a1=1,an=2an1an2,dla n2.
Wskazówka
Rozwiązanie

Ćwiczenie 6

Rozwiąż równanie rekurencyjne postaci


{a0=0,a1=1,an=an1an2dla n2.


i sprawdź, czy ciąg an jest ograniczony.

Wskazówka
Rozwiązanie

Ćwiczenie 7

Rozwiąż równanie rekurencyjne postaci


{a0=1,a1=5,a2=11,an=3an1+2an22an3dla n3.


Wskazówka
Rozwiązanie