Analiza matematyczna 2/Ćwiczenia 11: Twierdzenie Fubiniego. Twierdzenie o zmianie zmiennych
Twierdzenie Fubiniego. Twierdzenie o zmianie zmiennych
Ćwiczenie 11.1
Policzyć całkę
gdzie jest zbiorem ograniczonym powierzchniami:
Skorzystamy z twierdzenia Fubiniego. Popatrzmy jak zmieniają się
zmienne. W płaszczyźnie zmienia się od do a
od do wykresu funkcji
Rysunek AM2.M11.C.R02 (stary numer AM2.11.10)
Równocześnie zmienia się od do wykresu funkcji Mamy zatem:
Ćwiczenie 11.2.
Policzyć objętość kuli w o promieniu
Ćwiczenie 11.3.
Policzyć objętość bryły ograniczonej przez powierzchnię stożka
leżącą nad powierzchnią koła
Ćwiczenie 11.4.
Policzyć objętość bryły ograniczonej przez powierzchnię stożka
przez powierzchnię walca
oraz płaszczyznę .
Ćwiczenie 11.5.
Obliczyć objętość bryły danej powierzchnią o równaniu:
gdzie są dodatnimi stałymi.
Ćwiczenie 11.6.
Wykonać czytelny rysunek bryły, po której całkujemy w poniższej całce oraz rzuty bryły na płaszczyzny układu.
Ćwiczenie 11.7.
Mamy daną powierzchnię płaską Niech funkcja zadaje gęstość na to znaczy w każdym punkcie mamy gęstość (masy) równą Wtedy masa całej powierzchni wyraża się wzorem
Policzyć masę krążka o środku w punkcie i promieniu jeśli gęstość w każdym jego punkcie jest proporcjonalna do odległości od środka i równa na brzegu.
Ćwiczenie 11.8.
Mamy daną powierzchnię o gęstości masy Masę tej powierzchni wyznaczamy ze wzoru
(zobacz ćwiczenie 11.7.). Wtedy współrzędne środka ciężkości wyznaczamy ze wzorów:
Wyznaczyć współrzędne środka ciężkości ćwiartki okręgu:
o gęstości
Ćwiczenie 11.9.
Policzyć całkę po -wymiarowej kostce z funkcji