PEE Moduł 13

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Wykład 13. Modele elementów półprzewodnikowych

Wprowadzenie

Do analizy działania i projektowania układów elektronicznych stosuje się odpowiednie modele matematyczne oraz fizyczno-obwodowe elementów półprzewodnikowych wchodzących w skład tych układów. Modele te uwzględniają określone stany pracy, właściwości (np. wpływ temperatury na parametry) i nieliniowość charakterystyk danego elementu.


Rodzaje modeli. Modelem dowolnego urządzenia technicznego nazywamy zbiór informacji umożliwiających przewidywanie właściwości i analizowanie działania tego urządzenia w różnych stanach i warunkach pracy. W elektronice modele mają zazwyczaj postać równań matematycznych lub częściej są w postaci schematów zastępczych równoważnych przyjętym opisom matematycznym. W skład modelu mogą wchodzić dodatkowo charakterystyki prądowo-napięciowe lub inne zależności wielkości elektrycznych i nieelektrycznych poszczególnych przyrządów, elementów, większych podzespołów lub nawet całych układów.

W zależności od stopnia skomplikowania modele fizyczno-obwodowe służą do analizy i projektowania układów elektronicznych bez użycia komputera lub przy jego użyciu. Modele przyrządów półprzewodnikowych można różnie sklasyfikować.

Przyjmując za kryterium zakresy sygnałów jakie wystąpią na zaciskach przyrządu mamy modele:

  • nieliniowe (dla dużych sygnałów)
  • liniowe (małosygnałowe).

Ze względu na rodzaj sygnałów są modele:

  • statyczne (stałoprądowe)
  • dynamiczne (zmiennoprądowe), które są najczęściej przeznaczone do analizy obwodów w dziedzinie czasu lub częstotliwości.

Inne kryteria podziału mają na celu zaakcentowanie pewnych szczególnych cech przyrządu półprzewodnikowego, np. wpływu temperatury. Mamy tu modele:

  • izotemperaturowe
  • nieizotemperaturowe

Modele diod

Dla diod sygnałowych i diod mocy, kiedy pełnią one funkcje jednokierunkowych zaworów, najważniejsze jest zamodelowanie statycznej charakterystyki prądowo-napięciowej. Przykładową charakterystykę rzeczywistej diody przedstawiono na slajdzie. Najczęściej w katalogach podaje się charakterystyki w skali półlogarytmicznej. Ponieważ temperatura ma zasadniczy wpływ na ich przebieg, temperatura złącza jest tutaj parametrem.


Do prostych obliczeń charakterystykę diody aproksymuje się trzema odcinkami prostych przyjmując, dla poszczególnych obszarów pracy: przewodzenia, zaporowego i przebicia, charakterystyczne wartości rezystancji. Odcinek charakterystyki w zakresie przebicia (rezystancja rBR) nie jest brany pod uwagę, ponieważ podczas normalnej pracy urządzeń, w których zastosowano daną diodę, przebicie napięciowe jest stanem awaryjnym powodującym uszkodzenie urządzenia. Napięcie przebicia UBR nie jest podawane w katalogach przez producentów elementów półprzewodnikowych.

Ponieważ rezystancja obszaru zaporowego jest bardzo duża, około 107 razy większa od rezystancji w stanie przebicia i przewodzenia to często stosuje się dwuodcinkową aproksymację charakterystyki diody, np. w celu wyznaczenia strat mocy w stanie przewodzenia.

Dla tego modelu w stanie przewodzenia można napisać:

UF=UF(T0)+IFrF

gdzie:

UF(T0) - napięcie progu załączenia diody, rF - rezystancja dynamiczna diody.