Matematyka dyskretna 2/Ćwiczenia 6: Ciała skończone

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania

Ciała skończone

Ćwiczenie 1

Udowodnij, że jeśli d|n, to dla dowolnego p mamy xpd1|xpn1.

Wskazówka
Rozwiązanie

Ćwiczenie 2

Pochodna wielomianu f(x)=f0+f1x+f2x2++fnxn to wielomian f(x)=f1+2f2x++nfnxn1.

Pokaż, że:

Parser nie mógł rozpoznać (nieznana funkcja „\aligned”): {\displaystyle \displaystyle \aligned (f+g)'(x)&=f'(x)+g'(x),\\ (fg)'(x)&=f'(x)g(x)+f(x)g'(x). \endaligned}
Wskazówka
Rozwiązanie

Ćwiczenie 3

Pokaż, że rozkład wielomianu xpnx nad ciałem p składa się ze wszystkich nierozkładalnych, unormowanych wielomianów stopnia d, gdzie d|n. Każdy z takich wielomianów pojawia się dokładnie raz i wielomiany te stanowią wszystkie czynniki rozkładu xpnx.

Wskazówka
Rozwiązanie

Ćwiczenie 4

Pokaż, że dla dowolnej liczby pierwszej p i dowolnego n>1 w pierscieniu p[x] istnieje unormowany, nierozkładalny (nad p) wielomian stopnia n.

Wskazówka
Rozwiązanie

Ćwiczenie 5

Niech (Zn*,,1) będzie grupą elementów odwracalnych względem mnożenia modulo n, czyli n*={m:1mn, mn}. Pokaż, że gdy p jest liczbą pierwszą, to grupa p2* jest cykliczna.

Wskazówka
Rozwiązanie