Algebra liniowa z geometrią analityczną/Ćwiczenia 11: Formy kwadratowe

Z Studia Informatyczne
Wersja z dnia 22:22, 25 sie 2006 autorstwa Pitab (dyskusja | edycje)
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)
Przejdź do nawigacjiPrzejdź do wyszukiwania

Zadanie 11.1

Niech U,V,W będą przestrzeniami wektorowymi nad ciałem 𝕂 i niech


Φ:U×VW


będzie odwzorowaniem dwuliniowym. Niech


F:Uufu(V,W),


gdzie fu(v):=Φ(u,v). Wykazać, że F jest odwzorowaniem liniowym.

Wskazówka
Rozwiązanie

Zadanie 11.2

Niech V będzie przestrzenią wektorową nad ciałem i niech f:V będzie formą kwadratową. Definiujemy


φ:V×V(v,w)14(f(v+w)f(vw)).


Wykazać, że φ jest formą dwuliniową symetryczną, skojarzoną z f.

Wskazówka
Rozwiązanie

Zadanie 11.3

Dana jest forma kwadratowa


f:2(x1,x2)x12+3x222x1x2.


Znaleźć odwzorowanie dwuliniowe symetryczne skojarzone z f.

Wskazówka
Rozwiązanie

Zadanie 11.4

Dana jest forma kwadratowa


f:3(x1,x2,x3)2x12x2x3+3x32.


Wyznaczyć macierz f w bazie kanonicznej oraz rząd f.

Wskazówka
Rozwiązanie

Zadanie 11.5

Niech f:2(x1,x2)x1x2. Wykazać, że f jest formą kwadratową. Wyznaczyć macierz f przy bazie kanonicznej. Znaleźć bazę 2, przy której macierz f ma postać blokową występującą w tezie twierdzenia Sylvestera. Wyznaczyć sygnaturę f.

Wskazówka
Rozwiązanie

Zadanie 11.6

Sprowadzić do postaci kanonicznej następujące formy kwadratowe:


Parser nie mógł rozpoznać (nieznana funkcja „\aligned”): {\displaystyle \displaystyle \aligned f(x_1,x_2,x_3) &= x_1^2 + 3 x_1x_2 + 2x_2^2 +4x_2x_3 +x_3^2,\\ g (x_1,x_2,x_3)&= 2x_1^2 + x_2^2 + 2x_1x_3 +4x_2x_3 +3x_3^2. \endaligned}


Wskazówka
Rozwiązanie

Zadanie 11.7

Dane jest odwzorowanie liniowe


f:3(x1,x2,x3)(x1x2+2x3,x1+3x2,2x1x3)3.


Zbadać, czy f jest odwzorowaniem symetrycznym.

Wskazówka
Rozwiązanie