Analiza matematyczna 1/Ćwiczenia 3: Odległość i ciągi
Odległość i ciągi w Ćwiczenia
<span id=" Wykazać, że funkcje i zdefiniowane na jako
Parser nie mógł rozpoznać (nieznana funkcja „\aligned”): {\displaystyle \aligned d_{\infty}(x,y) & \ \stackrel{df}{=}\ & \max_{i=1,\ldots, N}|x_i-y_i|, \qquad\textrm{dla}\quad x,y\in\mathbb{R}^N,\\ d_1(x,y) & \ \stackrel{df}{=}\ & \sum_{i=1}^{N}|x_i-y_i| \qquad\textrm{dla}\quad x,y\in\mathbb{R}^N, \endaligned}
są metrykami
(patrz Przykłady Uzupelnic p.new.am1.w.03.050| i Uzupelnic p.new.am1.w.03.060|).
" style="font-variant:small-caps; color: #1A6ABF;">Ćwiczenie
{black}
{{cwiczenie|| Dla danej metryki w można zdefiniować odległość punktu od zbioru jako infimum wszystkich odległości między a punktami zbioru , czyli
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \mathrm{dist}\, (x,A) \ =\ \inf_{z\in A}d(x,z). }
{{red}Rysunek AM1.M03.C.R01 (stary numer AM1.3.24)}.
Dany jest zbiór
oraz dwa punkty oraz
Wyznaczyć
(a) odległość punktów i ;
(b) ;
kolejno w metrykach:
euklidesowej ;
taksówkowej ;
maksimowej
}}
{black}
Ćwiczenie
{black}
Ćwiczenie
{black}
<span id="
(1)
Podać przykład nieskończonej rodziny zbiorów otwartych w
takich, że ich przecięcie nie jest zbiorem otwartym.
(2)
Podać przykład nieskończonej rodziny zbiorów domkniętych w
takich, że ich suma nie jest zbiorem domkniętym.
" style="font-variant:small-caps; color: #1A6ABF;">Ćwiczenie
{black}
Ćwiczenie
{black}