MN04LAB

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania

Ćwiczenie

Aby obliczyć S(a,b)=a2b2 można zastosować dwa algorytmy: 𝐀𝐋𝐆1(a,b)=a*ab*b oraz 𝐀𝐋𝐆2(a,b)=(a+b)*(ab). Pokazać, że oba algorytmy są numerycznie poprawne, ale drugi z nich wywołuje mniejszy błąd względny wyniku w przypadku, gdy rdν(a)=a i rdν(b)=b.

Ćwiczenie

Pokazać, że naturalny algorytm obliczania cosinusa kąta między dwoma wektorami Parser nie mógł rozpoznać (nieznana funkcja „\inR”): {\displaystyle \displaystyle a, b\inR^n} ,

cos(a,b)=j=1najbj(j=1naj2)(j=1nbj2),

jest numerycznie poprawny. Oszacować błąd względny wyniku w flν.

Ćwiczenie

Pokazać, że naturalny algorytm obliczania Ax2 dla danej macierzy Parser nie mógł rozpoznać (nieznana funkcja „\inR”): {\displaystyle \displaystyle A\inR^{n\times n}} i wektora Parser nie mógł rozpoznać (nieznana funkcja „\inR”): {\displaystyle \displaystyle x\inR^n} jest numerycznie poprawny. Dokładniej,

flν(Ax2)=(A+E)x,

gdzie E22(n+2)nνA2. Ponadto, jeśli A jest nieosobliwa, to

|flν(Ax2)Ax2|2(n+2)nν(A2A12)Ax2.

Ćwiczenie

Niech 𝐀𝐋𝐆 będzie algorytmem numerycznie poprawnym w zbiorze danych fF0, przy czym dla małych ν, flν(𝐀𝐋𝐆(f))=φ(yν), gdzie yνyKνy i K nie zależy od ν i f (y=N(f)). Pokazać, że w ogólności 𝐀𝐋𝐆 nie musi być "numerycznie poprawny po współrzędnych", tzn. w ogólności nie istnieje bezwzględna stała K1 taka, że dla małych ν i dla dowolnej fF0

|yν,jyj|K1ν|yj|,1jn,

gdzie y=(y1,,yn).

Ćwiczenie

Podaj przykład funkcji f, której miejsce zerowe x* ma wspólczynnik uwarunkowania

  • mały
  • duży
Rozwiązanie