TC Moduł 2

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Układy logiczne – pojęcia podstawowe.

Podstawą teoretyczną techniki cyfrowej są układy logiczne. Funkcjonalnie układy logiczne klasyfikujemy na układy kombinacyjne i układy sekwencyjne. Wykład rozpoczynamy od układów kombinacyjnych. Układ kombinacyjny jest podstawowym układem logicznym umożliwiającym realizację funkcji boolowskich. Układ kombinacyjny konstruujemy z elementów logicznych po to, aby realizować funkcje lub ich zespoły opisujące bardziej skomplikowane układy cyfrowe. Dlatego rozważania o układach kombinacyjnych rozpoczynamy od pojęcia funkcji boolowskiej.

Pojęcie funkcji boolowskiej jest pojęciem podstawowym umożliwiającym modelowanie zjawisk fizycznych reprezentowanych jako odwzorowanie ciągów (wektorów) binarnych należących do zbioru X w ciągi binarne (wektory) ze zbioru Y, gdzie zbiory X, (Y) są podzbiorami n-krotnego, (m-krotnego) iloczynu kartezjańskiego zbioru B = {0, 1}.

Formalnie funkcją boolowską zmiennych binarnych x1,...,xn nazywamy odwzorowanie f:XY, gdzie XBn,YBm.

Jeżeli X=Bn, to funkcję taką nazywamy zupełną; w przeciwnym przypadku jest to funkcja niezupełna, zwana również funkcją nie w pełni określoną.

Najczęściej stosowane reprezentacje funkcji boolowskich to tablica prawdy oraz formuła (wyrażenie) boolowskie.


Funkcja f może być przedstawiona w postaci tablicy prawdy. Jest to tablica o n+1 kolumnach i 2n wierszach. W kolejnych wierszach są zapisywane wszystkie wartości ciągu x1,...,xn, czyli wszystkie wektory x. W ostatniej kolumnie podana jest wartość y przyporządkowywana danemu wektorowi lub „–”, jeżeli funkcja dla tego wektora nie jest określona. Kolejne wektory są numerowane, przy czym wartość i podana z lewej strony w dodatkowej kolumnie jest dziesiętnym odpowiednikiem wektora x traktowanego jako liczba w zapisie dwójkowym.

Oto przykłady uproszczonego zapisu funkcji boolowskich. Podane zapisy specyfikują funkcje boolowskie, których wektory wejściowe określone są liczbami dziesiętnymi.

Funkcje boolowskie reprezentowane odwzorowaniem f, jakkolwiek możliwe do bezpośredniej realizacji technicznej, nie są najlepszą formą do zastosowań. Znacznie wygodniejsze są reprezentacje funkcji w postaci formuł boolowskich. Ich zaleta wynika przede wszystkim z łatwej realizacji elementów logicznych zwanych bramkami logicznymi, które to elementy stanowią naturalną realizację formuł (wyrażeń) boolowskich, gdzie występują w postaci operatorów.

Formuła boolowska to wyrażenie, w którym zmienne boolowskie połączone są operatorami: +(OR),(AND),x¯(NOT). Operatory te zdefiniowane są w tabelce podanej na planszy dla działań dwuargumentowych AND i OR i jednoargumentowego NOT, ale ich uogólnienie na operatory wieloargumentowe jest oczywiste.


Dla funkcji opisanej tablicą prawdy podaną w tabelce na planszy podajemy sposób tworzenia formuły boolowskiej.

A na tej planszy pokazana jest realizacja tej funkcji na bramkach AND, OR, NOT.

W układzie kombinacyjnym z rysunku na planszy funkcja f, realizowana na jego wyjściu f, reprezentuje odwzorowanie z tabelki prawdy, co łatwo sprawdzić wprowadzając na wejścia układu odpowiednie wektory binarne i obliczając wartość uzyskaną na wyjściu y. Na przykład dla x1=x2=0,x3=1 na wyjściu bramki AND1 pojawi się sygnał o wartości 1, i w rezultacie wyjście y przyjmie wartość 1. Natomiast dla x1=x2=x3=0 na wyjściach wszystkich bramek AND będzie 0, a więc jednocześnie y przyjmie wartość 0, co jest zgodne z tablicą prawdy.


W dwuelementowej algebrze Boole'a wprowadza się też inne działania (operatory). Do najważniejszych z nich należą: zanegowany iloczyn (NAND), zanegowana suma (NOR), suma wyłączająca (tzw. suma modulo 2 lub różnica symetryczna, oznaczana EXOR). Operatorom tym odpowiadają stosowne symbole bramek.

Nie kwestionowaną zaletą formuł boolowskich jest możliwość ich upraszczania, a co zatem idzie możliwość uzyskiwania realizacji oszczędniejszych z punktu widzenia liczby bramek. Zasady formalne upraszczania formuł boolowskich związane są z prawami i własnościami algebry Boole’a.

Własności stałych: