PS Moduł 3

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
  • Metody analizy sygnałów w dziedzinie częstotliwości noszą nazwę metod częstotliwościowych lub metod widmowych.
  • W „języku” częstotliwościowym można w wielu przypadkach w sposób prostszy opisać podstawowe cechy sygnału. Łatwiej jest też rozpatrywać i interpretować niektóre operacje na sygnałach, a zwłaszcza operację filtracji.
  • Widmo X(ω) sygnału x(t) jest jego równoważną reprezentacją w dziedzinie częstotliwości. Ponieważ widmo jest w ogólnym przypadku funkcją zespoloną zmiennej rzeczywistej ω (por. przykład 3.1), reprezentacja ta ma charakter formalny, niefizyczny.

  • Zwróćmy uwagę, że w przykładzie 3.2 otrzymaliśmy widmo rzeczywiste. Jest to konsekwencją parzystości sygnału x(t)=X0Π(t/T) . Widmo to ma kształt funkcji Sa w dziedzinie częstotliwości.
  • Dla sygnałów o ograniczonej energii (należących do przestrzeni L2(,) ) przekształcenie Fouriera jest wzajemnie jednoznaczne, jeśli całkę (3.1) rozumie się w sensie Lebesgue’a.
  • Wzory (3.1) i (3.2) określają proste i odwrotne przekształcenie Fouriera w sensie zwykłym.

  • Chcąc wyprowadzić parę transformat w sensie granicznym należy w każdym indywidualnym przypadku skonstruować odpowiedni ciąg sygnałów o ograniczonej energii aproksymujący sygnał o ograniczonej mocy i dokonać przejścia granicznego. Bardzo często w wyniku przejścia granicznego otrzymujemy w granicy widma dystrybucyjne.
  • Ciąg aproksymujący sygnał x(t) o ograniczonej mocy konstruuje się zwykle mnożąc go przez funkcje dążące dostatecznie szybko do zera dla t± typu: eαt1(t) , jeśli tϵ[0,) , oraz Parser nie mógł rozpoznać (błąd składni): {\displaystyle e^{-\alpha |t|}\} lub Parser nie mógł rozpoznać (błąd składni): {\displaystyle e^{-\alpha t^2}\} , jeśli tϵ(,) .














</math>