PS Moduł 1

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
  • Za pomocą sygnałów przekazywana jest informacja. Często mówi się, że sygnał jest nośnikiem informacji.
  • Modelami matematycznymi posługujemy się w wielu dziedzinach nauki i techniki. Operowanie modelami sygnałów ma szereg zalet, m.in. umożliwia:
    • formalną analizę sygnałów na różnym poziomie dokładności,
    • wprowadzenie jednoznacznych kryteriów podziału sygnałów i na tej podstawie dokonanie ich klasyfikacji,
    • abstrahowanie od natury fizycznej sygnałów (tj. traktowanie sygnałów jako wielkości bezwymiarowych).

  • Rozważania ograniczymy wyłącznie do sygnałów determi¬nistycznych. Omówienie sygnałów losowych wymaga znajomości teorii procesów stochastycznych.
  • Sygnały dzielimy także ze względu na ich przeciwdziedzinę (zbiór wartości). Jeżeli zbiór ten jest ciągły, sygnał nazywamy ciągłym w amplitudzie. Jeżeli jest on dyskretny (w szczególności skończony) sygnał nazywamy dyskretnym w amplitudzie.
  • Łącząc kryteria podziału sygnałów ze względu na rodzaj ich dziedziny i przeciwdziedziny, można wyodrębnić cztery klasy sygnałów:
    • z czasem ciągłym i ciągłe w amplitudzie
    • z czasem ciągłym i dyskretne w amplitudzie
    • z czasem dyskretnym i ciągłe w amplitudzie
    • z czasem dyskretnym i dyskretne w amplitudzie (cyfrowe).
  • W klasie sygnałów dyskretnych wyróżniamy sygnały binarne, które przybierają w każdej chwili tylko dwie wartości binarne (np. 0 i 1 lub 1 i –1 ).

  • Zwróćmy uwagę, że sygnały przedstawione na rys. b) i d) otrzymujemy w wyniku próbkowania sygnałów z rys. a) i odpowiednio c). Z sygnałami powstałymi w wyniku próbkowania sygnałów analogowych mamy w praktyce do czynienia najczęściej. Sygnałami dyskretnymi mogą być jednak także sygnały nie mające pierwowzorów analogowych, np. ciąg notowań dziennych kursu złotówki do dolara. Podkreślmy, że sygnał dyskretny jest w istocie rzeczy ciągiem liczb.
  • Sygnały analogowe będziemy oznaczać x(t) , y(t),... , zaś sygnały dyskretne – x(tn) , y(tn),... lub w przypadku próbkowania równomiernego w chwilach nTsx(nTs) , y(nTs)... W odniesieniu do tych ostatnich z reguły operuje się czasem bezwymiarowym, unormowanym względem okresu próbkowania Ts . Oznacza się je wówczas symbolami x[n] , y[n],... lub x(n) , y(n),... , gdzie Parser nie mógł rozpoznać (błąd składni): {\displaystyle n\epsilon jest numerem próbki.}