Analiza matematyczna 2/Ćwiczenia 12: Całka krzwoliniowa. Twierdzenie Greena

Z Studia Informatyczne
Wersja z dnia 21:42, 22 sie 2006 autorstwa Arek (dyskusja | edycje)
(różn.) ← poprzednia wersja | przejdź do aktualnej wersji (różn.) | następna wersja → (różn.)
Przejdź do nawigacjiPrzejdź do wyszukiwania

{stre}{Streszczenie} {wsk}{Wskazówka} {rozw}{Rozwiązanie} {textt}{} {thm}{Twierdzenie}[section] {stw}[thm]{Stwierdzenie} {lem}[thm]{Lemat} {uwa}[thm]{Uwaga} {exa}[thm]{Example} {dfn}[thm]{Definicja} {wn}[thm]{Wniosek} {prz}[thm]{Przykład} {zadan}[thm]{Zadanie}

{} {}

Całka krzywoliniowa. Twierdzenie Greena. Ćwiczenia

Zadania

Ćwiczenie

Policzyć

Cydx+2xdy,

gdzie C jest łukiem cykloidy danej parametrycznie:

x=tsint, y=1cost, t[0,2π].
Wskazówka
Rozwiązanie

Ćwiczenie

Policzyć

K(x+y)dx+y2dy,

gdzie K jest kwadratem o wierzchołkach w (1,1),(1,1),(1,1),(1,1), obieganym przeciwnie do ruchu wskazówek zegara.

Wskazówka
Rozwiązanie

Ćwiczenie

W pewnym polu sił składowe pola wynoszą

Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle P(x,y) \ =\ 3x^2y+2xy^2+1, \quad Q(x,y) \ =\ x^3+2x^2y+1. }

Policzyć pracę potrzebną do przesunięcia punktu materialnego wzdłuż krzywej K łączącej punkt (0,0) z punktem (1,1), danej wzorem y=x20.

Wskazówka
Rozwiązanie

Ćwiczenie

Znaleźć (lub odgadnąć) potencjał dla pola sił z Zadania Uzupelnic z.new.am2.c.12.030|.

Wskazówka
Rozwiązanie

Ćwiczenie

Korzystając z twierdzenia Greena policzyć

Kyx2dx+xy2dy,

gdzie K jest okręgiem środku w (0,0) i promieniu 1.

Wskazówka
Rozwiązanie

Ćwiczenie

Policzyć całkę

K(ex+eyy)dx+(xey)dy,

gdzie K jest wykresem funkcji y=sinx, dla x[0,π].

Wskazówka
Rozwiązanie

Ćwiczenie

Policzyć całkę krzywoliniową:

K(exsiny)dx+(excosy)dy,

gdzie K jest parabolą y=x2+1 pomiędzy punktami (1,0) a (1,0).

Wskazówka
Rozwiązanie

Ćwiczenie

Za pomocą całki krzywoliniowej skierowanej obliczyć pole ograniczone elipsą E

Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \frac{x^2}{a^2}+\frac{y^2}{b^2} \ =\ 1, }

gdzie a,b>0 są dane.

Wskazówka
Rozwiązanie

Ćwiczenie

Za pomocą całki krzywoliniowej skierowanej obliczyć pole ograniczone asteroidą A

Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle x^{\frac{2}{3}}+y^{\frac{2}{3}} \ =\ a^{\frac{2}{3}}, }

gdzie a>0 jest dane.

Wskazówka
Rozwiązanie