Analiza matematyczna 1

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania

Forma zajęć

Wykład (30 godzin) + ćwiczenia (30 godzin)

Opis

Zadaniem kursu „Analiza matematyczna 1” jest zapoznanie studentów z podstawowymi narzędziami rachunku różniczkowego i całkowego funkcji jednej zmiennej w zakresie niezbędnym do zrozumienia treści wykładów kursowych. Kontynuacją tego kursu jest „Analiza matematyczna 2”.


Sylabus

Autorzy

  • Rafał Czyż
  • Leszek Gasiński
  • Marta Kosek
  • Jerzy Szczepański
  • Halszka Tutaj-Gasińska

Wymagania wstępne

  • Wymagana jest znajomość matematyki w zakresie szkoły średniej.

Zawartość

  • zbiory liczbowe i funkcje
    • podzbiory zbioru liczb rzeczywistych
    • zbiór liczb zespolonych
    • przegląd funkcji elementarnych
  • ciągi wektorowe i liczbowe
    • odległość w N
    • granica; punkt skupienia; granice dolna i górna
    • granice niewłaściwe
    • liczba e
  • szeregi liczbowe
    • warunek konieczny
    • szereg geometryczny; szereg harmoniczny
    • kryteria zbieżności
  • granica i ciągłość funkcji
    • definicje Cauchy'ego i Heinego
    • własność Darboux
    • twierdzenie Weierstrassa o osiąganiu kresów przez funkcję ciągłą
    • granice niewłaściwe
  • pochodna
    • interpretacja geometryczna i fizyczna
    • twierdzenia o pochodnych
    • symbole nieoznaczone; reguła de l'Hospitala
    • twierdzenie Rolle'a, twierdzenie Lagrange'a
    • monotoniczność
    • ekstrema
    • pochodne wyższych rzędów
    • wzór Taylora
    • wypukłość
    • badanie przebiegu zmienności funkcji
  • pierwotna (całka nieoznaczona)
    • metody całkowania
  • całka Riemanna funkcji jednej zmiennej
    • interpretacja geometryczna; funkcje całkowalne w sensie Riemanna
    • podstawowe twierdzenie rachunku różniczkowego i całkowego (Newtona-Leibniza)
    • twierdzenie o zmianie zmiennych w całce Riemanna
    • długość krzywej
    • obliczanie pól powierzchni i objętości brył obrotowych

Literatura

  • W. Rudin, „Podstawy analizy matematycznej”, Państwowe Wydawnictwo Naukowe, Warszawa 1982.
  • W. Rudnicki, „Wykłady z analizy matematycznej”, Państwowe Wydawnictwo Naukowe, Warszawa 2001.
  • G.M. Fichtenholz, „Rachunek różniczkowy i całkowy”, tom I, II i III. Państwowe Wydawnictwo Naukowe, Warszawa 1978.
  • L. Drużkowski, „Analiza matematyczna dla fizyków. I. Podstawy”, Skrypt Uniwersytetu Jagiellońskiego, Kraków 1995.
  • L. Drużkowski, „Analiza matematyczna dla fizyków. II. Wybrane zagadnienia”, Skrypt Uniwersytetu Jagiellońskiego, Kraków 1997.
  • W. Krysicki, L. Włodarski, „Analiza matematyczna w zadaniach”, część I i II, Państwowe Wydawnictwo Naukowe, Warszawa 1986.
  • J. Banaś, S. Wędrychowicz, „Zbiór zadań z analizy matematycznej”, Wydawnictwo Naukowo-Techniczne, Warszawa 2001.

Moduły