Algebra liniowa z geometrią analityczną/Test 2: Przestrzenie wektorowe

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania

W zbiorze 2 okre\'slamy nast\e pujące działania:
:2×2((x1,x2),(y1,y2))(x1+y1,x2+y2)2,\
:×2(α,(x1,x2))(αx1,x2)2.

(x1,x2)2  2(x1,x2)=(x1,x2)(x1,x2).

Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \forall \alpha, \ \beta \in \mathbb{R} \ \forall (x_1,x_2) \in \mathbb{R}^2 \ \ (\alpha \beta)\odot (x_1,x_2) = (\alpha \odot (\beta \odot (x_1,x_2)))} .

α (x1,x2), (y1,y2)2  α((x1,x2)(y1,y2))=α(x1,x2)α(y1,y2).

Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \forall \alpha, \ \beta \in \mathbb{R} \forall (x_1,x_2) \in \mathbb{R}^2 \\ (\alpha +\beta)\odot (x_1,x_2) = \alpha \odot (x_1,x_2) \boxplus \beta \odot (x_1,x_2) } .


Niech U={(x1,x2,x3)3 : x1+2x2+3x3=0} i niech w=(1,0,1).

U jest podprzestrzenią wektorową przestrzeni 3.

(3,0,1)U.

uU u+wU.

α (αwUα=0).


Niech u=(2,1,0), v=(1,1,1) i niech U={αu+βv : α,β}.

(1,1,1)U.

(4,1,2)U.

x,yU x+yU.

xU α αxU.


Niech U={(x1,x2,x3)3 : x1x2+x3=0, x1+2x2=0}, W={(x1,x2,x3)3 : 2x1+x23x3=0}.

UW={Θ}.

3=UW.

UW=3.

U+W=3.


Niech Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle U = \{ (x_1,x_2, x_3) \in \mathbb{R}^3 \  : \ x_1 =0\}, \ W = \{ (x_1,x_2, x_3) \in \mathbb{R}^3 \  : \ x_2 +x_3 =0 \}, Z = \{(t,-t,t) \ : \ t \in \mathbb{R} \}} .

UW={Θ}.

U+W=3.

UW jest podprzestrzenią wektorową przestrzeni 3.

ZW jest podprzestrzenią wektorową przestrzeni 3.


Niech Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle V = \mathbb{R}^{\mathbb{R}}, \ U = \{ f \in \mathbb{R}^{\mathbb{R}} \ : \ \forall x \in \mathbb{R} \ f(x) = f(-x)\}, \ W = \{ f \in \mathbb{R}^{\mathbb{R}} \ : \ \forall x~\in \mathbb{R} \ f(x) = -f(-x)\},\ \ Q = \{ f \in \mathbb{R}^{\mathbb{R}} \ : \ f\} jest wielomianem stopnia parzystego }.

Q jest podprzestrzenią wektorową przestrzeni V.

U jest podprzestrzenią wektorową przestrzeni V.

W jest podprzestrzenią wektorową przestrzeni V.

V=UW.