Logika dla informatyków/Ćwiczenia 1

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania

Ćwiczenie 1 Zbadać, czy następujące formuły są tautologiami rachunku zdańi czy są spełnialne:

  1. (pr)(qs)(¬p¬s)(¬p¬q);
  2. (pq)(qr);
  3. ((pq)r)¬(((qr)r)r));
  4. (pq)(¬pr)(r¬q);
  5. ((¬pq)r)¬(pq);
  6. p(¬pq)(¬p¬q);
  7. (pq)(p¬q);
  8. qr(pqpr);
  9. (pqr)(q(¬ps))(¬sqr)q.


Ćwiczenie 2 Czy następujące zbiory formuł są spełnialne?

  1. {p¬q,q¬r,r¬p};
  2. {pq,qr,rs¬q};
  3. {¬(¬qp),p¬r,q¬r};
  4. {sq,p¬q,¬(sp),s}.

Ćwiczenie 3 Czy zachodzą następujące konsekwencje?

  1. pq¬r,pr¬q;
  2. pq,p(qr)pr;
  3. p(qr),pqqr;
  4. (pq)r,¬pr;
  5. (pq)r,¬rp;
  6. pq,r¬qr¬p.

Ćwiczenie 4
Dla dowolnej formuły Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} niech Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \hat{\var\varphi}} oznacza dualizację formuły Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} , tzn. formułę powstającą z Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi } przez zastąpienie każdego wystąpienia symbolem orazkażdego wystąpienia symbolem .

(i) Dowieść,że Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} jest tautologią wtedy i tylko wtedy, gdy Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \neg\hat{\var\varphi}} jest tautologią.

(ii)Dowieść, że Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi\leftrightarrow\psi} jest tautologią wtedy i tylko wtedy, gdy Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \hat{\var\varphi}\leftrightarrow\hat{\psi}} jest tautologią.

Ćwiczenie 5 Znależć formułę zdaniową Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} , która jest spełniona dokładnie przy wartościowaniach ϱ spełniających warunki:

  1. Dokładnie dwie spośród wartości ϱ(p), ϱ(q) i ϱ(r) są równe 1.
  2. ϱ(p)=ϱ(q)=ϱ(r).


Rozwiązanie: Można to robić na różne sposoby, ale najprościej po prostu wypisać alternatywę koniunkcji, np. (pq¬r)(p¬qr).

Ćwiczenie 6 Udowodnić, że dla dowolnej funkcji f:{0,1}k{0,1}istnieje formuła Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} , w której występują tylko spójniki i oraz zmienne zdaniowe ze zbioru {p1,,pk}, o tej własności, że dla dowolnego wartościowania zdaniowego ϱ zachodzi równośćParser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle [[\var\varphi]]\varrho = f(\varrho(p_1),\ldots, \varrho(p_k))} . (Inaczej mówiąc, formuła Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} definiuje funkcję zerojedynkową f.)

Wskazówka: Indukcja ze względu na k.

Ćwiczenie 7   Niech X będzie dowolnym zbiorem niepustym. Dowolną funkcję Parser nie mógł rozpoznać (błąd składni): {\displaystyle v:\mbox{\small ZZ}\to\pot X} nazwijmy wartościowaniem w zbiorze Parser nie mógł rozpoznać (nieznana funkcja „\pot”): {\displaystyle \pot X} . Każdej formule zdaniowej Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} przypiszemy teraz pewien podzbiór Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle [[\var\varphi]]\warpi} zbioru X, który nazwiemy jej wartością przy wartościowaniu v.

  • [[]]v= oraz [[top]]v=X;
  • [[p]]v=v(p), gdy p jest symbolem zdaniowym;
  • Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle [[\neg\var\varphi]]v= X-[[{\var\varphi]]v} ;
  • Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle [[\var\varphi\vee\psi ]]v=\wf\prooftree \var\varphi \justifies \warpi \using \textrm{(W)}\endprooftree\cup\wf\prooftree \psi \justifies \warpi \using \textrm{(W)}\endprooftree} ;
  • Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle [[\var\varphi\wedge\psi]]\warpi \using \textrm{(W)}\endprooftree=\wf\prooftree \var\varphi \justifies \warpi \using \textrm{(W)}\endprooftree\cap\wf\prooftree \psi \justifies \warpi \using \textrm{(W)}\endprooftree} ;
  • Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle [[\var\varphi\to\psi]]\warpi}= (X-\wfz{\var\varphi \using \textrm{(W)}\endprooftree\warpi)\cup\wfz\psi\warpi} .

Udowodnić, że formuła Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} jest tautologią rachunku zdań \wtw, gdy jest prawdziwaParser nie mógł rozpoznać (nieznana funkcja „\pot”): {\displaystyle \pot X} , tj. gdy dla dowolnego Parser nie mógł rozpoznać (nieznana funkcja „\warpi”): {\displaystyle \warpi} jej wartością jest cały zbiór X.


Ćwiczenie 8 \item Uzupełnić szczegóły dowodu Faktu #pania.Pokazać, że długość postaci normalnej może wzrosnąć wykładniczo w stosunku do rozmiaru formuły początkowej.

Ćwiczenie 9 \item Niech formuła Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi\to\psi} będzie tautologią rachunku zdań. Znaleźć taką formułę ϑ, że:

  • Zarówno Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi\to\vartheta} jak i ϑψ są tautologiami rachunku zdań.
  • W formule ϑ występują tylko te zmienne zdaniowe,które występują zarówno w Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} jak i w ψ.

Ćwiczenie 10 \item Niech Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi(p)} będzie pewną formułą, w którejwystępuje zmienna zdaniowa p i niech q będzie zmienną zdaniową niewystępującą w Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi(p)} . Przez Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi(q)} oznaczmy formułę powstałą z Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi(p)} przez zamianę wszystkich p na q. Udowodnić, że jeśli

\hfil Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi(p), \var\varphi(q) \models p\leftrightarrow q} \hfil

to istnieje formuła ψ, nie zawierająca zmiennych p ani q,taka że

\hfil Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi(p)\models p\leftrightarrow\psi} .\hfil