PS Moduł 6

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
  • W zastosowaniach teorii sygnałów często porównujemy analizowanego sygnału z innym sygnałem, w szczególności ¬z swoją własną przesuniętą w czasie kopią. Podobieństwo sygnałów można charakteryzować za pomocą funkcji korelacyjnych.
  • Przypomnijmy, że na podstawie iloczynu skalarnego możemy wyznaczyć zarówno odległość dwóch sygnałów, jak i kąt między nimi w danej przestrzeni Hilberta.
  • Jeśli x(t)L2 , to także xτ(t)L2.
  • Dla różnych wartości przesunięcia τ całka definicyjna (6.1) przybiera różne wartości. W ten sposób otrzymujemy zależność funkcyjną od zmiennej τ . Dla ustalonego τ wartość funkcji autokorelacji jest polem pod wykresem iloczynu sygnału nieprzesuniętego i przesuniętego.
  • Definicja (6.1) została podana od razu dla sygnałów zespolonych. Przedrostek „auto” oznacza, że funkcja korelacyjna (6.1) opisuje korelację czasową między danym sygnałem a wersją przesuniętą tego samego sygnału. Podkreślamy to dodając do symbolu Parser nie mógł rozpoznać (błąd składni): {\displaystyle "\varphi"\,} funkcji autokorelacji indeks sygnału Parser nie mógł rozpoznać (błąd składni): {\displaystyle "x"\,} .

  • Parzystość funkcji autokorelacji w przypadku sygnałów rzeczywistych oznacza, że możemy ją wówczas wyznaczać jedynie dla dodatnich wartości zmiennej τ (opóźnień sygnału).
  • Wzór (6.2) wynika z podstawienia τ=0 we wzorze definiującym funkcję autokorelacji.
  • Funkcja autokorelacji przybiera maksymalną co do modułu wartość dla τ=0 .
  • Brak korelacji czasowej sygnałów oznacza ich ortogonalność.
  • Funkcja autokorelacji sygnału x(t)L2 jest F - transformowalna w zwykłym sensie.
  • Funkcja autokorelacji jest niezmiennicza względem przesunięcia, tj. φx(τ)=φxt0(τ) dla dowolnego t0 , gdzie xt0(t)=x(tt0).



  • Przedstawione na rysunku funkcje autokorelacji można wyznaczyć wprost z definicji. Wszystkie funkcje mają jedyne maksimum w punkcie τ=0.
  • Funkcja autokorelacji impulsu prostokątnego jest trójkątna. Sposób jej konstrukcji jest pokazany na rys. e.
  • Trójkątny kształt funkcji autokorelacji występuje również w przypadku ciągu impulsów prostokątnych i prostokątnego impulsu radiowego.



  • Słuszność pary transformat (6.3) można wykazać na podstawie twierdzenia Rayleigha dla klasy sygnałów L2 i twierdzenia o przesunięciu. Ponieważ F[x(tτ)]=X(ω)ejωτ , zatem:


x(t)x*(tτ)dτ=12πX(ω)X*(ω)ejωτdω=12π|X(ω)|2ejωτdω


  • Energię sygnału można obliczyć:
    • w dziedzinie czasu, jako całkę z kwadratu modułu sygnału,
    • w dziedzinie korelacyjnej, jako φx(0),
    • w dziedzinie częstotliwości, jako całkę z widma energii podzieloną przez 2π.

  • Widmo energii jest zawsze funkcją rzeczywistą parzystą i opisuje rozkład energii wzdłuż osi częstotliwości. Energię sygnału zawartą w przedziale pulsacji [ω1,omega2] można wyznaczyć, obliczając całkę


Ex(ω1,ω2)=1πω1ω2Φx(ω)dω (por. rys. a).

  • Funkcja autokorelacji idealnego sygnału dolnopasmowego x(t)=X0Saω0t ma również kształt funkcji Sa. Wynika to z faktu, że zarówno widmo amplitudowe tego sygnału, jak i jego widmo energii są prostokątne.

  • Związki między sygnałem i jego charakterystykami w dziedzinie częstotliwości i dziedzinie korelacyjnej ilustruje prosty diagram. Strzałki podwójne oznaczają na nim związki wzajemnie jednoznaczne, tj. jednoznaczne przejścia od jednej do drugiej wielkości , natomiast strzałki pojedyncze oznaczają przejście tylko w jedną stronę.
  • Funkcja autokorelacji sygnału stanowi jedynie częściowy opis sygnału. Znając te funkcję możemy odtworzyć widmo amplitudowe sygnału, tracimy jednak informację o widmie fazowym.
  • Podana definicja efektywnego czasu korelacji ma sens dla przypadku sygnałów, których funkcja autokorelacji maleje monotonicznie. Dla sygnałów o funkcji autokorelacji dążącej do zera oscylacyjnie można wprowadzić inne miary czasu korelacji.
  • Zasada nieoznaczoności pozostaje w mocy bez względu na sposób definiowania efektywnego czasu korelacji i efektywnej szerokości widma.