PS Moduł 4

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
  • Przypominamy, że sygnały dyskretne o skończonej energii należą do przestrzeni Hilberta l2 , w której iloczyn skalarny jest określony wzorem (x,y)l2=x(nTs)y*(nTs) .
  • Celowo przyjmujemy na razie nieunormowaną skalę czasu.
  • Podobnie jak w przypadku sygnałów analogowych widmo sygnału dyskretnego jest w ogólnym przypadku ciągłą funkcją zespoloną zmiennej rzeczywistej ω .
  • W teorii sygnałów dyskretnych argument widma jest oznaczany zwyczajowo przez ejωTs , a nie w sposób naturalny przez ω .

  • Okresowość widm sygnałów dyskretnych jest ich podstawową cechą. Gdybyśmy widma te wyrazili w funkcji częstotliwości f=ω/2π , ich okres byłby równy częstotliwości próbkowania fs .
  • Jeśli widmo sygnału dyskretnego jest wyrażone w funkcji pulsacji unormowanej θ=ω/2π , jego okres jest równy π .
  • Widmo (4.2) można także zapisać w funkcji częstotliwości unormowanej ν=ω/ωs=f/fs=θ/2π . Jego okres jest wówczas równy 1.

  • Widmo impulsu Kroneckera jest stałe przedziale πθπ , a zarazem na całej osi θ .
  • Korzystanie ze wzorów na sumę skończonego lub nieskończonego szeregu geometrycznego jest charakterystyczne dla obliczania widm wielu sygnałów dyskretnych.

  • Wykres widma amplitudowego dyskretnego impulsu prostokątnego został sporządzony dla N=6 w przedziale [3π,3π] . Jeśli N rośnie, wysokość okresowo powtarzanych „listków” głównych widma rośnie, a ich szerokość maleje. Jednocześnie maleje poziom listków bocznych.
  • Zwiększając N do nieskończoności otrzymujemy w granicy dyskretny sygnał stały. Przejściu granicznemu towarzyszy wzrost wysokości listków głównych widma do nieskończoności i zanikanie listków bocznych do zera. W efekcie otrzymujemy dystrybucję grzebieniową w dziedzinie częstotliwości (rys. b)
  • Wzór (4.4) określa wartości kolejnych próbek sygnału dla nϵ .