Logika dla informatyków/Ćwiczenia 4: Różnice pomiędzy wersjami
mNie podano opisu zmian |
m Zastępowanie tekstu – „.</math>” na „</math>.” |
||
Linia 6: | Linia 6: | ||
{{cwiczenie|1|c| | {{cwiczenie|1|c| | ||
Wykazać, że dla dostatecznie dużych <math>q</math> istnieje zdanie o randze | Wykazać, że dla dostatecznie dużych <math>q</math> istnieje zdanie o randze | ||
kwantyfikatorowej <math>q</math>, definiujące porządek liniowy o mocy <math>2^q | kwantyfikatorowej <math>q</math>, definiujące porządek liniowy o mocy <math>2^q</math>. | ||
}} | }} | ||
Linia 29: | Linia 29: | ||
Dane są dwie struktury relacyjne <math>\mathfrak A=\langle | Dane są dwie struktury relacyjne <math>\mathfrak A=\langle | ||
U,R^\mathfrak A\rangle</math> i <math>\mathfrak B=\langle U,R^\mathfrak B\rangle</math> nad sygnaturą złożoną z jednego dwuargumentowego symbolu | U,R^\mathfrak A\rangle</math> i <math>\mathfrak B=\langle U,R^\mathfrak B\rangle</math> nad sygnaturą złożoną z jednego dwuargumentowego symbolu | ||
relacyjnego. Ich nośnikiem jest <math>U=\{1,2,\dots,15\}</math>, relacja <math>R^\mathfrak A(x,y )</math> zachodzi wtedy i tylko wtedy, gdy <math>x|y</math>, a relacja <math>R^\mathfrak B(x,y )</math> \wtw, gdy <math>x\equiv y\pmod 2 | relacyjnego. Ich nośnikiem jest <math>U=\{1,2,\dots,15\}</math>, relacja <math>R^\mathfrak A(x,y )</math> zachodzi wtedy i tylko wtedy, gdy <math>x|y</math>, a relacja <math>R^\mathfrak B(x,y )</math> \wtw, gdy <math>x\equiv y\pmod 2</math>. | ||
Ustalić, jaką minimalną rangę kwantyfikatorową ma zdanie <math>\var\varphi</math> takie, że <math>\mathfrak A\models\var\varphi</math> i <math>\mathfrak B\not\models\var\varphi | Ustalić, jaką minimalną rangę kwantyfikatorową ma zdanie <math>\var\varphi</math> takie, że <math>\mathfrak A\models\var\varphi</math> i <math>\mathfrak B\not\models\var\varphi</math>. }} | ||
{{cwiczenie|8|| | {{cwiczenie|8|| | ||
Linia 38: | Linia 38: | ||
[[Grafika:ldi_cw8.gif]] | [[Grafika:ldi_cw8.gif]] | ||
Ustalić, jaką minimalną rangę kwantyfikatorową ma zdanie <math>\var\varphi</math> takie, że <math>\mathfrak A\models\var\varphi</math> i <math>\mathfrak B\not\models\var\varphi | Ustalić, jaką minimalną rangę kwantyfikatorową ma zdanie <math>\var\varphi</math> takie, że <math>\mathfrak A\models\var\varphi</math> i <math>\mathfrak B\not\models\var\varphi</math>.}} |
Wersja z 09:18, 5 wrz 2023
Link z wykładu 8 do cwiczenia 4. Nazwa linku: "c"
Ćwiczenie 1
Wykazać, że dla dostatecznie dużych istnieje zdanie o randze kwantyfikatorowej , definiujące porządek liniowy o mocy .
Ćwiczenie 2
Adaptując dowód Faktu #qqudowodnić, że struktury Parser nie mógł rozpoznać (błąd składni): {\displaystyle \<\{1-1/n | n=1,2,\dots\},\leq\>} oraz Parser nie mógł rozpoznać (błąd składni): {\displaystyle \<\bigcup_{n=1}^\infty\{1-1/n,1+1/n,3-1/n\},\leq\>} , gdzie jest w obu wypadkach standardowym porządkiem liczb wymiernych, są elementarnie równoważne.
Wywnioskować stąd, że pojęcie dobrego porządku nie jest wyrażalne w logice pierwszego rzędu. (Zupełnie inny dowód tego faktu poznamy w Rozdziale 8.Ćwiczenie 3
Ćwiczenie 4
Ćwiczenie 5
Ćwiczenie 6
Ćwiczenie 7
Dane są dwie struktury relacyjne i nad sygnaturą złożoną z jednego dwuargumentowego symbolu relacyjnego. Ich nośnikiem jest , relacja zachodzi wtedy i tylko wtedy, gdy , a relacja \wtw, gdy .
Ustalić, jaką minimalną rangę kwantyfikatorową ma zdanie Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} takie, że Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \mathfrak A\models\var\varphi} i Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \mathfrak B\not\models\var\varphi} .Ćwiczenie 8
Dane są dwie sześcioelementowe struktury relacyjne i nad sygnaturą złożoną z jednego dwuargumentowego symbolu relacyjnego. Struktury są narysowane poniżej jako grafy skierowane:
Ustalić, jaką minimalną rangę kwantyfikatorową ma zdanie Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} takie, że Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \mathfrak A\models\var\varphi} i Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \mathfrak B\not\models\var\varphi} .