Programowanie funkcyjne/Podstawy/Ćwiczenia: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Kubica (dyskusja | edycje)
Linia 23: Linia 23:
Sumy kolejnych liczb nieparzystych dają kwadraty kolejnych liczb naturalnych, zgodnie ze wzorem: <math>\sum_{i=1}^k (2 i - 1) = k^2</math>.  Wykorzystaj ten fakt do napisania procedury <tt>sqrt</tt> obliczającej <tt>sqrt x</tt> <math> = \left\lfloor \sqrt{x} \right\rfloor</math>.
Sumy kolejnych liczb nieparzystych dają kwadraty kolejnych liczb naturalnych, zgodnie ze wzorem: <math>\sum_{i=1}^k (2 i - 1) = k^2</math>.  Wykorzystaj ten fakt do napisania procedury <tt>sqrt</tt> obliczającej <tt>sqrt x</tt> <math> = \left\lfloor \sqrt{x} \right\rfloor</math>.
}}
}}
{{rozwiazanie|||<div class="mw-collapsible mw-made=collapsible mw-collapsed"> <div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible mw-made=collapsible mw-collapsed">
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie</span>
<div class="mw-collapsible-content" style="display:none">
   '''let''' sqrt n =  
   '''let''' sqrt n =  
     '''let rec''' pom k s =  
     '''let rec''' pom k s =  
       '''if''' s > n '''then''' k-1 '''else''' pom (k+1) (s + 2 * k + 1)
       '''if''' s > n '''then''' k-1 '''else''' pom (k+1) (s + 2 * k + 1)
     '''in''' pom 0 0;;
     '''in''' pom 0 0;;
</div></div>}}
</div></div>


{{cwiczenie|[Test pierwszości]||
{{cwiczenie|[Test pierwszości]||
Napisz procedurę, która sprawdza, czy dana liczba jest pierwsza.
Napisz procedurę, która sprawdza, czy dana liczba jest pierwsza.
}}
}}
{{rozwiazanie|||<div class="mw-collapsible mw-made=collapsible mw-collapsed"> <div class="mw-collapsible-content" style="display:none">
<div class="mw-collapsible mw-made=collapsible mw-collapsed">
<span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie</span>
<div class="mw-collapsible-content" style="display:none">
   '''let''' isprime x =  
   '''let''' isprime x =  
     '''let rec''' pom a =  
     '''let rec''' pom a =  
Linia 40: Linia 44:
       '''else''' pom (a+1)
       '''else''' pom (a+1)
     '''in''' (x > 1) && (pom 2);;
     '''in''' (x > 1) && (pom 2);;
</div></div>}}
</div></div>


{{cwiczenie|[Zera silni]||
{{cwiczenie|[Zera silni]||

Wersja z 13:42, 1 cze 2020

Praca domowa

  • Stopień parzystości liczby całkowitej x to największa taka liczba naturalna i, że x dzieli się przez 2i. Liczby nieparzyste mają stopień parzystości 0, liczby 2 i -6 mają stopień parzystości 1, a liczby 4 i 12 mają stopień parzystości 2. Przyjmujemy, że 0 ma stopień parzystości -1. Napisz procedurę parzystość wyznaczającą stopień parzystości danej liczby całkowitej.
  • Udowodnij, że dla każdego naturalnego n, fib n jest równe n-tej liczbie Fibonacciego. Podaj specyfikację dla fibpom i udowodnij ją przez indukcję.
let fib n =
  let rec fibpom a b n = 
    if n = 0 then a else fibpom b (a + b) (n - 1)
  in 
    fibpom 0 1 n;;
  • Forma specjalna let-in jest tylko lukrem syntaktycznym i może być rozwinięta do λ-abstrakcji. W jaki sposób?


Ćwiczenia

W przypadku zajęć laboratoryjnych należy najpierw zapoznać studentów ze środowiskiem i uruchamianiem Ocamla.

Rozwiązaniami poniższych zadań są proste programiki operujące na liczbach całkowitych (bez rekurencji ogonowej i list):

Ćwiczenie [sqrt x]

Sumy kolejnych liczb nieparzystych dają kwadraty kolejnych liczb naturalnych, zgodnie ze wzorem: i=1k(2i1)=k2. Wykorzystaj ten fakt do napisania procedury sqrt obliczającej sqrt x =x.

Rozwiązanie

Ćwiczenie [Test pierwszości]

Napisz procedurę, która sprawdza, czy dana liczba jest pierwsza.

Rozwiązanie

Ćwiczenie [Zera silni]

Napisz procedurę zera_silni : int -> int, która dla danej dodatniej liczby całkowitej n obliczy ile zer znajduje się na końcu zapisu dziesiętnego liczby n!.

Laboratorium

Ćwiczenie [Odwracanie liczb]

Napisz procedurę, która przekształca daną liczbę w taką, w której cyfry wystepują w odwrotnej kolejności, np. 1234 jest przekształcane na 4321.

Rozwiązanie

{{{3}}}

Ćwiczenie [Numerologia]

Napisz procedurę, która sprawdza, czy dana liczba jest podzielna przez 9 w następujący sposób: jedyne liczby jednocyforwe podzielne przez 9 to 9 i 0; reszta z dzielenia liczby wielocyforwej przez 9 jest taka sama, jak reszta dzielenia sumy jej cyfr przez 9; jeśli suma cyfr jest wielocyfrowa, to całość powtarzamy, aż do uzyskania liczby jednocyfrowej.

Rozwiązanie

{{{3}}}

Ćwiczenie [Reszta modulo 11]

Napisz procedurę, która sprawdza czy dana liczba jest podzielna przez 11 w następujący sposób: sumujemy cyfry liczby znajdujące się na parzystych pozycjach, oraz te na nieparzystych pozycjach, różnica tych dwóch liczb przystaje modulo 11 do wyjściowej liczby; krok ten należy powtarzać aż do uzyskania liczby jednocyfrowej.

Rozwiązanie

{{{3}}}

Ćwiczenie [Kodowanie par liczb]

Zaimplementuj kodowanie par liczb naturalnych jako liczby naturalne. To znaczy, napisz procedurę dwuargumentową, która otrzymawszy dwie liczby naturalne zakoduje je w jednej liczbie naturalnej. Dodatkowo napisz dwie procedury, które wydobywają z zakodowanej pary odpowiednio pierwszą i drugą liczbę.

Rozwiązanie

{{{3}}}

Ćwiczenie [Nietrywialne pierwiastki z 1]

Napisz procedurę, która dla danej liczby n sprawdzi czy pierścień reszt modulo n zawiera nietrywialne pierwiastki z 1 (tj. takie liczby k, k1, kn1, że k21 mod n).

Rozwiązanie

{{{3}}}