Metody programowania /StosyKolejki: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Pch (dyskusja | edycje)
Nie podano opisu zmian
Pch (dyskusja | edycje)
Linia 24: Linia 24:
===Stosy tablicowo===
===Stosy tablicowo===
{{kotwica|kod_zrodlowy|}}
{{kotwica|kod_zrodlowy|}}
'''type''' stos = '''record'''
T : '''array'''[1..n] '''of''' typ;  //Zakładamy, że wszystkiego elementy na stosie będą tego samego typu
p : Integer              //indeks pierwszego wolnego elementu
'''end'''
'''procedure''' MakeEmpty('''var''' s : stos); //Inicjalizacja stosu pustego
'''begin''' s.p:=1 '''end''';
'''function''' Empty('''const''' s : stos) : Boolean; //Sprawdzenie pustości stosu
'''begin''' Empty := s.p=1 '''end''';
'''procedure''' Push('''var''' s : stos; x:typ); //Włożenie na stos elementu o wartości x
'''begin'''
  s.T[s.p]:=x;
  s.p:=s.p+1
'''end''';
'''procedure''' Pop('''var''' s : stos; '''var''' x:typ); //Zdjęcie ze stosu najświeższego elementu
'''begin'''                                  //i przypisanie jego wartości parametrowi x
  x:=s.T[s.p];
  s.p:=s.p-1
'''end''';
===Stosy jako listy jednokierunkowe===
{{kotwica|kod_zrodlowy|}}
'''type''' stos = ^'''record'''
w :  typ;                //Zakładamy, że wszystkie elementy na stosie będą tego samego typu
nast : stos              //wskaźnik do kolejnego elementu
'''end'''
'''procedure''' MakeEmpty('''var''' s : stos); //Inicjalizacja stosu pustego
'''begin''' s := '''nil''' '''end''';
'''function''' Empty('''const''' s : stos) : Boolean; //Sprawdzenie pustości stosu
'''begin''' Empty :=  s = '''nil''' '''end''';
'''procedure''' Push('''var''' s : stos; x:typ); //Włożenie na stos elementu o wartości x
''' var''' pom: stos;
'''begin'''
  '''new'''(pom);
  pom^.w:=x;
  '''if''' s= '''nil''' '''then''' pom^.nast:='''nil'''
  '''else''' pom^.nast:=s;
  s:=pom
'''end''';
'''procedure''' Pop('''var''' s : stos; '''var''' x:typ); //Zdjęcie ze stosu najświeższego elementu
'''var''' pom:stos;
'''begin'''                                  //i przypisanie jego wartości parametrowi x
  x:=s^.w;
  pom := s;
  s := pom^.nast;
  '''dispose'''(pom)
'''end''';
Często procedury stosowe mają postać funkcji: wartością procedury Push jest nowy stos, wartością procedury Pop jest wartość zdjętego elementu x.
Dodatkowo czasami stosuje się procedury upraszczające korzystanie ze stosów. Do najważniejszych należą procedury, które podajemy w implementacji tablicowej:
'''function''' Full('''const''' s : stos) : Boolean; //Sprawdzenie, czy na stosie jest miejsce na kolejny element
'''begin''' Full := s.p>n '''end''';
'''procedure''' Top('''const''' s : stos; x:typ); //Pobranie wartości z wierzchołka stosu bez zdejmowania elementu
'''begin'''
  x:=s.T[s.p];
'''end''';
'''procedure''' Erase('''var''' s : stos); //Wyczyszczenie stosu
'''begin'''                                 
  s.p:=1
'''end''';
Zauważmy, że wszystkie te procedury można zaimplementować za pomocą procedur podstawowych. W szczególności wykonanie procedury Top(s,x) jest równoważne wywołaniu pary Pop(s,x); Push(s,x). Procedura Erase(s) jes równoważna pętli '''while not''' Empty(s) '''do''' Pop(s,x). Procedura Full wymagałaby użycia własnej zmiennej zliczającej liczbę elementów na stosie.
== Tablicowa implementacja kolejek ==
Z kolejkami sprawa jest o tyle trudniejsza, że musimy na nich operować z obu stron: z jednej wkładamy elementy, z drugiej wyjmujemy. Przedstawimy trzy implementacje kolejek: dwie pierwsze odpowiadają zaproponowanym implementacjom stosowym, trzecia jest oryginalna i wykorzystuje listę cykliczną. Dla rozróżnienia tych podobnych operacji będziemy w przypadku kolejek używać polskich nazw procedur. 
===Kolejki tablicowo===
{{kotwica|kod_zrodlowy|}}
Tym razem ponieważ będziemy pobierali z drugiego końca, niż wkładali, kolejka będzie się ,,przesuwać'' w tablicy. Gdy dojdzie do końca, zawiniemy ją tak, że kolejne elementy będą się pojawiać od początku. Z przyczyn technicznych


  '''type''' stos = '''record'''  
  '''type''' stos = '''record'''  

Wersja z 19:30, 15 gru 2008

Spośród wielu struktur danych używanych w informatyce dwie mają szczególne znaczenie. Charakteryzuje je prostota koncepcji, łatwość implementacji i przydatność w rozwiązywaniu rozmaitych problemów algorytmicznych. Są to stosy i kolejki. Ogólnie chodzi o niezwykle ważny w informatyce problem reprezentacji zbiorów skończonych. Bardzo często bowiem potrzebujemy przechowywać zbiory elementów pewnej przestrzeni, potencjalnie bardzo dużej (np. wszystkie możliwe rezerwacje lotnicze dla wszystkich ludzi na świecie) w taki sposób, żeby efektywnie móc wykonywać podstawowe trzy operacje:

  • sprawdzenie, czy dany element znajduje się w zbiorze
  • dodanie elementu do zbioru
  • usunięcie elementu ze zbioru.

Problem ten dokładnie jest opisany w kursie "Algorytmy i struktury danych", tu jednak chcemy zająć się jego wersją, związaną z pewną specyfiką, gdy zależy nam na wykonaniu jakiejś czynności dla każdego elementu zbioru i to w kolejności narzuconej przez nasze wymagania. O ile na wkładanie elementu do zbioru nie mamy wpływu - po prostu trzeba akceptować każde żądanie - o tyle w przypadku pobierania elementów ze zbioru mamy pewną dowolność. Podstawowe dwie strategie, które będziemy tu rozważać, to

  • strategia stosowa, kiedy pobieramy elementy w kolejności odwrotnej do wkładania, czyli jako pierwszy będzie pobrany element, który został włożony jako ostatni (LIFO: Last-In-First-Out)
  • strategia kolejkowa, kiedy pobieramy elementy w kolejności zgodnej z kolejnością wkładania, czyli jako pierwszy będzie pobrany element, który został włożony najdawniej (FIFO: First-In-First-Out)

Podstawowe operacje zatem, które będziemy rozważali będą następujące:

  • Utwórz pusty zbiór
  • Sprawdź, czy zbiór jest pusty (chodzi m.in. o zabezpieczenie przed próbą pobrania elementu z pustego zbioru)
  • Dodaj element do zbioru
  • Pobierz element ze zbioru, usuwając go z niego.

W zależności od tego, czy stosujemy strategię stosową, czy listową, zastosujemy różne implementacje. Zacznijmy od stosów.

Przedstawimy tu dwie najpopularniejsze implementacje stosów: tablicową i listową.

Tablicowa implementacja stosów

Stosy będziemy reprezentować jako parę (tablica T, indeks p pierwszego wolnego miejsca). Włożenie nowego elementu będzie polegać na wstawieniu go pod indeksem p i zwiększenie indeksu p o 1. Pobranie będzie polegało na zmniejszeniu indeksu p o 1 i odczytaniu znajdującej się tam wartości. Utworzenie pustego stosu będzie sprowadzało się do inicjalizacji wskaźnika na 1, a sprawdzenie, czy stos jest pusty na sprawdzeniu, czy indeks p jest równy 1. Oto komplet procedur stosowych:

Stosy tablicowo

type stos = record 
T : array[1..n] of typ;   //Zakładamy, że wszystkiego elementy na stosie będą tego samego typu
p : Integer              //indeks pierwszego wolnego elementu
end
procedure MakeEmpty(var s : stos); //Inicjalizacja stosu pustego
begin s.p:=1 end;
function Empty(const s : stos) : Boolean; //Sprawdzenie pustości stosu
begin Empty := s.p=1 end;
procedure Push(var s : stos; x:typ); //Włożenie na stos elementu o wartości x
begin 
 s.T[s.p]:=x; 
 s.p:=s.p+1
end;
procedure Pop(var s : stos; var x:typ); //Zdjęcie ze stosu najświeższego elementu 
begin                                   //i przypisanie jego wartości parametrowi x
 x:=s.T[s.p]; 
 s.p:=s.p-1
end;


Stosy jako listy jednokierunkowe

type stos = ^record 
w :  typ;                //Zakładamy, że wszystkie elementy na stosie będą tego samego typu
nast : stos              //wskaźnik do kolejnego elementu
end
procedure MakeEmpty(var s : stos); //Inicjalizacja stosu pustego
begin s := nil end;
function Empty(const s : stos) : Boolean; //Sprawdzenie pustości stosu
begin Empty :=  s = nil end;
procedure Push(var s : stos; x:typ); //Włożenie na stos elementu o wartości x
 var pom: stos;
begin 
 new(pom);
 pom^.w:=x;
 if s= nil then pom^.nast:=nil
 else pom^.nast:=s;
 s:=pom
end;
procedure Pop(var s : stos; var x:typ); //Zdjęcie ze stosu najświeższego elementu 
var pom:stos;
begin                                   //i przypisanie jego wartości parametrowi x
 x:=s^.w;
 pom := s;
 s := pom^.nast; 
 dispose(pom)
end;

Często procedury stosowe mają postać funkcji: wartością procedury Push jest nowy stos, wartością procedury Pop jest wartość zdjętego elementu x.

Dodatkowo czasami stosuje się procedury upraszczające korzystanie ze stosów. Do najważniejszych należą procedury, które podajemy w implementacji tablicowej:

function Full(const s : stos) : Boolean; //Sprawdzenie, czy na stosie jest miejsce na kolejny element
begin Full := s.p>n end;
procedure Top(const s : stos; x:typ); //Pobranie wartości z wierzchołka stosu bez zdejmowania elementu
begin 
 x:=s.T[s.p]; 
end;
procedure Erase(var s : stos); //Wyczyszczenie stosu
begin                                   
 s.p:=1 
end;

Zauważmy, że wszystkie te procedury można zaimplementować za pomocą procedur podstawowych. W szczególności wykonanie procedury Top(s,x) jest równoważne wywołaniu pary Pop(s,x); Push(s,x). Procedura Erase(s) jes równoważna pętli while not Empty(s) do Pop(s,x). Procedura Full wymagałaby użycia własnej zmiennej zliczającej liczbę elementów na stosie.


Tablicowa implementacja kolejek

Z kolejkami sprawa jest o tyle trudniejsza, że musimy na nich operować z obu stron: z jednej wkładamy elementy, z drugiej wyjmujemy. Przedstawimy trzy implementacje kolejek: dwie pierwsze odpowiadają zaproponowanym implementacjom stosowym, trzecia jest oryginalna i wykorzystuje listę cykliczną. Dla rozróżnienia tych podobnych operacji będziemy w przypadku kolejek używać polskich nazw procedur.

Kolejki tablicowo

Tym razem ponieważ będziemy pobierali z drugiego końca, niż wkładali, kolejka będzie się ,,przesuwać w tablicy. Gdy dojdzie do końca, zawiniemy ją tak, że kolejne elementy będą się pojawiać od początku. Z przyczyn technicznych

type stos = record 
T : array[1..n] of typ;   //Zakładamy, że wszystkiego elementy na stosie będą tego samego typu
p : Integer              //indeks pierwszego wolnego elementu
end
procedure MakeEmpty(var s : stos); //Inicjalizacja stosu pustego
begin s.p:=1 end;
function Empty(const s : stos) : Boolean; //Sprawdzenie pustości stosu
begin Empty := s.p=1 end;
procedure Push(var s : stos; x:typ); //Włożenie na stos elementu o wartości x
begin 
 s.T[s.p]:=x; 
 s.p:=s.p+1
end;
procedure Pop(var s : stos; var x:typ); //Zdjęcie ze stosu najświeższego elementu 
begin                                   //i przypisanie jego wartości parametrowi x
 x:=s.T[s.p]; 
 s.p:=s.p-1
end;


Stosy jako listy jednokierunkowe

type stos = ^record 
w :  typ;                //Zakładamy, że wszystkie elementy na stosie będą tego samego typu
nast : stos              //wskaźnik do kolejnego elementu
end
procedure MakeEmpty(var s : stos); //Inicjalizacja stosu pustego
begin s := nil end;
function Empty(const s : stos) : Boolean; //Sprawdzenie pustości stosu
begin Empty :=  s = nil end;
procedure Push(var s : stos; x:typ); //Włożenie na stos elementu o wartości x
 var pom: stos;
begin 
 new(pom);
 pom^.w:=x;
 if s= nil then pom^.nast:=nil
 else pom^.nast:=s;
 s:=pom
end;
procedure Pop(var s : stos; var x:typ); //Zdjęcie ze stosu najświeższego elementu 
var pom:stos;
begin                                   //i przypisanie jego wartości parametrowi x
 x:=s^.w;
 pom := s;
 s := pom^.nast; 
 dispose(pom)
end;