Programowanie funkcyjne/Scheme: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Kubica (dyskusja | edycje)
Kubica (dyskusja | edycje)
Linia 43: Linia 43:
  <kombinacja>    ::= <u>(</u> { <wyrażenie> }<sup>+</sup> <u>)</u>
  <kombinacja>    ::= <u>(</u> { <wyrażenie> }<sup>+</sup> <u>)</u>
  <stała>        ::= <identyfikator> | <liczba> | ...
  <stała>        ::= <identyfikator> | <liczba> | ...
=== Wyrażenia arytmetyczne ===
<p align="justify">
Do budowy wyrażeń arytmetycznych możemy używać standardowych symboli operacji arytmetycznych
oraz liczb całkowitych i zmiennopozycyjnych.
Dla obu rodzajów liczb używamy tych samych operacji.
Dzięki temu, że w Scheme'ie zgodność typów jest kontrolowana w trakcie wykonania,
typ wyniku jest ustalany w trakcie obliczeń, na podstawie typów argumentów.
</p>


<p align="justify">
<p align="justify">
Linia 48: Linia 57:
tzn. najpierw operacja, a potem argumenty.  
tzn. najpierw operacja, a potem argumenty.  
Jednak inaczej niż w notacji polskiej, nawiasy otaczające kombinacje są konieczne.  
Jednak inaczej niż w notacji polskiej, nawiasy otaczające kombinacje są konieczne.  
Niektóre procedury potrafią przyjmować różne liczby argumentów.
Operacje arytmetyczne potrafią przyjmować dowolną liczbę argumentów.  
Jest tak np. z operacjami arytmetycznymi.  
Nawiasy wyznaczają dokładnie listę argumentów.  
Nawiasy wyznaczają dokładnie listę argumentów w wyołaniu procedury.  
</p>
</p>


{{przyklad|[Wyrażenia]||
{{przyklad|[Wyrażenia arytmetyczne]||
Poniższe wyrażenia są wszystkie równe 42 (lub 42.0).}}
Poniższe wyrażenia są wszystkie równe 42 (lub 42.0).}}
  42
  42
Linia 62: Linia 70:
  (/ (silnia 7) (silnia 5))
  (/ (silnia 7) (silnia 5))
  (/ 596.4 14.2)
  (/ 596.4 14.2)
=== Wyrażenia logiczne ===
<p align="justify">
Wartości prawda i fałsz są reprezentowane przez stałe <tt>#t</tt> i <tt>#f</tt>.
Do budowy wyrażeń logicznych możemy używać standardowych relacji porównywania oraz
operacji logicznych:
* <tt>and</tt> (koniunkcja),
* <tt>or</tt> (alternatywa) i
* <tt>not</tt> (negacja).
Relacje porównywania przyjmują dwa lub więcej argumentów i są spełnione,
jeśli każde dwa kolejne argumenty są w danej relacji.
Operacje <tt>and</tt>  i <tt>or</tt>  przyjmują dowolną liczbę argumentów.
Natomiast negacja przyjmuje tylko jeden argument.
</p>
{{przyklad|[Wyrażenia logiczne]||}}
(and #t (< 1 2 3) (not (= 1 2 1)))
''#t''
(and)
''#t ''
(= (* 2 2) (+ 2 2) 4)
''#t ''


=== Wyrażenia warunkowe ===
=== Wyrażenia warunkowe ===

Wersja z 22:59, 17 gru 2006

Wstęp

W dotychczasowych wykładach poznawaliśmy i używaliśmy języka Ocaml. Ocaml (Objective Caml) to dialekt języka ML. Wśród dialektów ML-a jest to język bogaty, ze względu na to, że zawiera:

  • bogaty zestaw bibliotek,
  • programowanie obiektowe,
  • system modułów i funktorów, wraz z funktorami wyższych rzędów.

Tak jak inne dialekty ML-a, Ocaml charakteryzuje się:

  • ścisłą statyczną kontrolą typów,
  • polimorfizmem, oraz
  • tym, że zawiera konstrukcje imperatywne.

W tym i kolejnym wykładzie zobaczymy przedstawicieli innych rodzin funkcyjnych języków programowania. W tym wykładzie poznamy język Scheme -- dialekt Lispu. Jest to język o bardzo prostej, wręcz minimalistycznej składni. Tak jak Ocaml, zawiera konstrukcje imperatywne. Natomiast charakteryzuje się dynamiczną kontrolą typów.

Kombinacje i wyrażenia

Podstawową konstrukcją składniową w Scheme'ie jest kombinacja. Jest to sekwencja wartości ujętych w nawiasy. Pierwsza z tych wartości musi być procedurą. Kolejne wartości stanowią argumenty.

Scheme jest językiem z gorliwym obliczaniem wartości argumentów. Obliczenie wartości kombinacji polega na:

  • obliczeniu wartości wszystkich elementów kombinacji (zarówno procedury, jak i jej argumentów),
  • zastosowaniu procedury do obliczonych wartości argumentów.

Wyrażenia, nazywane również S-wyrażeniami, budujemy używając kombinacji, nazwanych wartości i stałych.

<wyrażenie>     ::= <stała> | <kombinacja> 
<kombinacja>    ::= ( { <wyrażenie> }+ )
<stała>         ::= <identyfikator> | <liczba> | ...

Wyrażenia arytmetyczne

Do budowy wyrażeń arytmetycznych możemy używać standardowych symboli operacji arytmetycznych oraz liczb całkowitych i zmiennopozycyjnych. Dla obu rodzajów liczb używamy tych samych operacji. Dzięki temu, że w Scheme'ie zgodność typów jest kontrolowana w trakcie wykonania, typ wyniku jest ustalany w trakcie obliczeń, na podstawie typów argumentów.

Do pewnego stopnia, wyrażenia zapisujemy jak w notacji polskiej, tzn. najpierw operacja, a potem argumenty. Jednak inaczej niż w notacji polskiej, nawiasy otaczające kombinacje są konieczne. Operacje arytmetyczne potrafią przyjmować dowolną liczbę argumentów. Nawiasy wyznaczają dokładnie listę argumentów.

Przykład [Wyrażenia arytmetyczne]

Poniższe wyrażenia są wszystkie równe 42 (lub 42.0).
42
(+ 36 6)
(* 3 14)
(- 100 58)
(- (* 1 2 3 4 5) (/ (* (+ 6 7) 8 9) 12)) 
(/ (silnia 7) (silnia 5))
(/ 596.4 14.2)

Wyrażenia logiczne

Wartości prawda i fałsz są reprezentowane przez stałe #t i #f. Do budowy wyrażeń logicznych możemy używać standardowych relacji porównywania oraz operacji logicznych:

  • and (koniunkcja),
  • or (alternatywa) i
  • not (negacja).

Relacje porównywania przyjmują dwa lub więcej argumentów i są spełnione, jeśli każde dwa kolejne argumenty są w danej relacji. Operacje and i or przyjmują dowolną liczbę argumentów. Natomiast negacja przyjmuje tylko jeden argument.

Przykład [Wyrażenia logiczne]

(and #t (< 1 2 3) (not (= 1 2 1)))
#t

(and)
#t 

(= (* 2 2) (+ 2 2) 4) 
#t 


Wyrażenia warunkowe

Mamy dwa rodzaje wyrażeń warunkowych: cond i if. Wyrażenie warunkowe cond ma postać kombinacji składającej się ze słowa kluczowego cond oraz pewnej liczby klauzul. Każda z klauzul to para wyrażeń ujętych w nawiasy. Pierwsze z wyrażeń musi być warunkiem logicznym -- jest ono nazywane dozorem. Drugie wyrażenia w klauzulach nazywamy następnikami.

Obliczenie wyrażenia warunkowego cond polega na:

  • obliczaniu dozorów kolejnych klauzul, aż do napotkania prawdziwego dozoru,
  • obliczeniu następnika klauzuli, której dozór jest prawdziwy.

W ostatniej klauzuli, jako dozór można podać słowo kluczowe else. Jest ono równoważne dozorowi, który jest zawsze spelniony.

<wyrażenie> ::= (cond { ( <wyrażenie> <wyrażenie> ) }+ )

Wyrażenia warunkowe if mają postać kombinacji czterech elementów, z których pierwszy to słowo kluczowe if. Drugi element kombinacji to warunek. Trzeci element to wyrażenie, które jest obliczane gdy warunek jest prawdziwy, a czwarty to wyrażenie, które jest obliczane gdy warunek jest fałszywy.

<wyrażenie> ::= (if <wyrażenie> <wyrażenie> <wyrażenie> )

Wyrażenie postaci:

(if w v1 v2)

jest równoważne:

(cond (w v1) (else v2))

Oczywiście, wyrażenia warunkowe cond i if są formami specjalnymi, gdyż nie dałoby się ich zdefiniować jako procedur.

Definicje

Nowe nazwane wartości możemy definiować za pomocą formy specjalnej define. Ma ona postać kombinacji trzech elementów, z których pierwszy to słowo kluczowe define. Jeżeli drugi element jest identyfikatorem, to jest to definicja stałej, a jej wartość określa trzeci element. Drugi element może też być kombinacją złożoną z kilku identyfikatorów. Wówczas jest to definicja procedury -- pierwszy z identyfikatorów to nazwa definiowanej procedury, a kolejne to parametry formalne definiowanej procedury. Trzeci element definicji to treść procedury. Definicje procedur mogą być rekurencyjne (i nie wymaga to dodatkowego zaznaczenia, jak w Ocamlu).

<definicja>  ::=  (define <identyfikator> <wyrażenie> )  |
                  (define ( { <identyfikator> }+ ) <wyrażenie> )

Przykład [Definicje stałych]

Oto przykładowe definicje stałych

(define a 6)
(define b (+ a 1))
(* a b)
42

Podobnie jak w Ocamlu, kolejne definicje przysłaniają już zdefiniowane stałe:

(define a 2)
(define b (* 2 a))  
(define a (* a b)) 
a
8

Przykład [Definicje procedur]

(define (silnia n) (if (<= n 1) 1 (* n (silnia (- n 1)))))