Programowanie funkcyjne/Scheme: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Kubica (dyskusja | edycje)
Kubica (dyskusja | edycje)
Linia 48: Linia 48:
</p>
</p>


{{przyklad|[Wyrażenia]||
Poniższe wyrażenia są wszystkie równe 42 (lub 42.0).}}
  42
  42
  (+ 36 6)
  (+ 36 6)

Wersja z 21:52, 17 gru 2006

Wstęp

W dotychczasowych wykładach poznawaliśmy i używaliśmy języka Ocaml. Ocaml (Objective Caml) to dialekt języka ML. Wśród dialektów ML-a jest to język bogaty, ze względu na to, że zawiera:

  • bogaty zestaw bibliotek,
  • programowanie obiektowe,
  • system modułów i funktorów, wraz z funktorami wyższych rzędów.

Tak jak inne dialekty ML-a, Ocaml charakteryzuje się:

  • ścisłą statyczną kontrolą typów,
  • polimorfizmem, oraz
  • tym, że zawiera konstrukcje imperatywne.

W tym i kolejnym wykładzie zobaczymy przedstawicieli innych rodzin funkcyjnych języków programowania. W tym wykładzie poznamy język Scheme -- dialekt Lispu. Jest to język o bardzo prostej, wręcz minimalistycznej składni. Tak jak Ocaml, zawiera konstrukcje imperatywne. Natomiast charakteryzuje się dynamiczną kontrolą typów.

Kombinacje i wyrażenia

Podstawową konstrukcją składniową w Scheme'ie jest kombinacja. Jest to sekwencja wartości ujętych w nawiasy. Pierwsza z tych wartości musi być procedurą. Kolejne wartości stanowią argumenty. Obliczenie wartości kombinacji polega na wywołaniu procedury będącej pierwszym elementem kombinacji i zastosowaniu jej do pozostałych elementów kombinacji.

Wyrażenia, nazywane również S-wyrażeniami, budujemy używając kombinacji, nazwanych wartości i stałych.

<wyrażenie>     ::= <stała> | <kombinacja> 
<kombinacja>    ::= ( { <wyrażenie> }+ )
<stała>         ::= <identyfikator> | <liczba> | ...

Do pewnego stopnia, wyrażenia zapisujemy jak w notacji polskiej, tzn. najpierw operacja, a potem argumenty. Jednak inaczej niż w notacji polskiej, nawiasy otaczające kombinacje są konieczne. Niektóre procedury potrafią przyjmować różne liczby argumentów. Jest tak np. z operacjami arytmetycznymi. Nawiasy wyznaczają dokładnie listę argumentów w wyołaniu procedury.

Przykład [Wyrażenia]

Poniższe wyrażenia są wszystkie równe 42 (lub 42.0).
42
(+ 36 6)
(* 3 14)
(- 100 58)
(- (* 1 2 3 4 5) (/ (* (+ 6 7) 8 9) 12)) 
(/ (silnia 7) (silnia 5))
(/ 596.4 14.2)


(define (silnia n) (if (<= n 1) 1 (* n (silnia (- n 1)))))