Programowanie funkcyjne/Model obliczeń/Ćwiczenia: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Dorota (dyskusja | edycje)
Nie podano opisu zmian
Linia 15: Linia 15:
** możesz korzystać wyłącznie z rekurencji ogonowej,
** możesz korzystać wyłącznie z rekurencji ogonowej,
** jedyne operacje na liczbach, z jakich możesz korzystać to: <tt>+</tt>, <tt>-</tt> oraz porównywanie.  
** jedyne operacje na liczbach, z jakich możesz korzystać to: <tt>+</tt>, <tt>-</tt> oraz porównywanie.  
* Napisz procedurę <tt>podziel : int list -> int list list</tt>, która dla danej listy <math>[a_1; a_2; \dots; a_n]</math> zawierającej permutację zbioru <math>\{1, 2, \dots, n\}</math> znajdziejej podział na jak najliczniejszą listę list postaci:  
* Napisz procedurę <tt>podziel : int list -> int list list</tt>, która dla danej listy <math>[a_1; a_2; \dots; a_n]</math> zawierającej permutację zbioru <math>\{1, 2, \dots, n\}</math> znajdzie jej podział na jak najliczniejszą listę list postaci:  
<center><math> [[a_1; a_2; \dots; a_{k_1}]; [a_{{k_1}+1}; a_{{k_1}+2}; \dots; a_{k_2}]; \dots; [a_{{k_{m-1}}+1}; a_{{k_{m-1}}+2}; \dots; a_{k_m}]] </math>,</center><br/>  
<center><math> [[a_1; a_2; \dots; a_{k_1}]; [a_{{k_1}+1}; a_{{k_1}+2}; \dots; a_{k_2}]; \dots; [a_{{k_{m-1}}+1}; a_{{k_{m-1}}+2}; \dots; a_{k_m}]] </math>,</center><br/>  
:taką, że:<br/>
:taką, że:<br/>

Wersja z 11:40, 3 lis 2006

Ćwiczenia

  • Porównaj foldr i foldl. Która z nich jest ogonowa?
  • Potęgowanie liczb - liniowe i logarytmiczne, ogonowe.
  • Rozważ standardowe procedury przetwarzania list: length, map, append,rev. Czy w ich przypadku definicja ogonowa zmniejsza złożoność pamięciową?
  • Potęgowanie funkcji - najpierw liniowe, potem logarytmiczne, ale obie wersje z rekurencją ogonową. Rozrysuj w jaki sposób oblicza się:
iterate 2 (function x -> x * (x+1)) 2
iterate 3 (function x -> x * (x+1)) 1
         

(w zależności od wersji, cierpliwości i powierzchni tablic :-). W przypadku wersji logarytmicznej, procedura wynikowa jest obliczana w czasie logarytmicznym, ale ona sama działa w czasie liniowym.

Laboratorium

  • Napisz procedurę sześciany : int -> int list taką, że wynikiem sześciany n jest lista postaci [13;23;;n3]. Rozwiązując to zadanie:
    • możesz korzystać wyłącznie z rekurencji ogonowej,
    • jedyne operacje na liczbach, z jakich możesz korzystać to: +, - oraz porównywanie.
  • Napisz procedurę podziel : int list -> int list list, która dla danej listy [a1;a2;;an] zawierającej permutację zbioru {1,2,,n} znajdzie jej podział na jak najliczniejszą listę list postaci:
[[a1;a2;;ak1];[ak1+1;ak1+2;;ak2];;[akm1+1;akm1+2;;akm]],


taką, że:
{a1,a2,,ak1}={1,2,,k1}(równość zbiorów),{ak1+1,ak1+2,,ak2}={k1+1,k1+2,,k2},{akm1+1,akm1+2,,akm}={km1+1,km1+2,,km}


Przyjmujemy, że wynikiem dla listy pustej jest lista pusta.
Przykład: podziel[2;3;1;6;5;4;7;9;10;11;8]=[[2;3;1];[6;5;4];[7];[9;10;11;8]].
Rozwiązując to zadanie powinieneś skorzystać z rekurencji, ale wolno Ci korzystać wyłącznie z rekurencji ogonowej.