Programowanie funkcyjne/Programowanie imperatywne/Ćwiczenia: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Kubica (dyskusja | edycje)
Dorota (dyskusja | edycje)
Nie podano opisu zmian
Linia 1: Linia 1:
== Praca domowa ==
== Praca domowa ==
* Zastosuj metodę spaceru do sprawdzenia, czy drzewo jest drzewem BST.
* Zastosuj metodę spaceru do sprawdzenia, czy drzewo jest drzewem BST.
* Zaimplementuj modyfikowalne listy i procedurę <tt>append</tt>, która modyfikuje daną listę przez dołączenie na jej końcu innej listy. Dołączana lista jest przy tym niszczona. Procedura <tt>append</tt> powinna działać w stałym czasie. (Lista powinna zawierać referencje do obu jej końców.)
* Zaimplementuj modyfikowalne listy i procedurę <tt>append</tt>, która modyfikuje daną listę przez dołączenie na jej końcu innej listy. Dołączana lista jest przy tym niszczona. Procedura <tt>append</tt> powinna działać w stałym czasie. (Lista powinna zawierać referencje do obu jej końców).  
* Napisz procedurę, która odwraca zadaną listę modyfikowalną. Dwukrotne odwrócenie powinno dawać listę ''tożsamą'' z początkową. Należy to zrobić w stałej pamięci dodatkowej i liniowym czasie.  
* Napisz procedurę, która odwraca zadaną listę modyfikowalną. Dwukrotne odwrócenie powinno dawać listę ''tożsamą'' z początkową. Należy to zrobić w stałej pamięci dodatkowej i liniowym czasie.  



Wersja z 15:48, 30 wrz 2006

Praca domowa

  • Zastosuj metodę spaceru do sprawdzenia, czy drzewo jest drzewem BST.
  • Zaimplementuj modyfikowalne listy i procedurę append, która modyfikuje daną listę przez dołączenie na jej końcu innej listy. Dołączana lista jest przy tym niszczona. Procedura append powinna działać w stałym czasie. (Lista powinna zawierać referencje do obu jej końców).
  • Napisz procedurę, która odwraca zadaną listę modyfikowalną. Dwukrotne odwrócenie powinno dawać listę tożsamą z początkową. Należy to zrobić w stałej pamięci dodatkowej i liniowym czasie.

Ćwiczenia

  • Zaimplementuj cykliczne listy modyfikowalne.
  • Zaimplementuj imperatywną kolejkę FIFO.
  • Napisz procedurę sprawdzającą, czy dana lista zawiera cykl. Można to zrobić w stałej pamięci i liniowym czasie (i to na kilka sposobów!).