Logika dla informatyków/Ćwiczenia 13: Różnice pomiędzy wersjami
Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 1: | Linia 1: | ||
{{cwiczenie|1|| | {{cwiczenie|1|| | ||
Udowodnić, że logiki trójwartościowe Heytinga-Kleene-Łukasiewicza, Bochvara i Sobocińskiego spełniają prawa de Morgana. | Udowodnić, że logiki trójwartościowe Heytinga-Kleene-Łukasiewicza, Bochvara i Sobocińskiego spełniają prawa de Morgana. |
Wersja z 12:01, 26 wrz 2006
Ćwiczenie 1
Udowodnić, że logiki trójwartościowe Heytinga-Kleene-Łukasiewicza, Bochvara i Sobocińskiego spełniają prawa de Morgana.
Ćwiczenie 2
Podać przykład zdania logiki pierwszego rzędu, które nie jest tautologią, ale jest prawdziwe we wszystkich strukturach takich, że
Ćwiczenie 3
Udowodnić, że zbiór tautologii logiki pierwszego rzędu nad
sygnaturą składającą się tylko z równości jest rozstrzygalny.Wskazówka
{{{3}}}
Ćwiczenie 4
Zbadać złożoność obliczeniową algorytmu zaproponowanego powyżej i udowodnić, że zbiór tautologii logiki pierwszego rzędu nad sygnaturą składającą się tylko z równości jest PSPACE-zupełny.
Ćwiczenie 4
Udowodnić, że zbiór tautologii logiki pierwszego rzędu nad sygnaturą składającą się tylko z równości i skończenie wielu symboli stałych jest rozstrzygalny.
Wskazówka
{{{3}}}