Logika dla informatyków/Ćwiczenia 4: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 36: | Linia 36: | ||
Dane są dwie sześcioelementowe struktury relacyjne <math>\mathfrak A</math> i <math>\mathfrak B</math> nad sygnaturą złożoną z jednego dwuargumentowego symbolu relacyjnego. Struktury są narysowane poniżej jako grafy skierowane: | Dane są dwie sześcioelementowe struktury relacyjne <math>\mathfrak A</math> i <math>\mathfrak B</math> nad sygnaturą złożoną z jednego dwuargumentowego symbolu relacyjnego. Struktury są narysowane poniżej jako grafy skierowane: | ||
<span id=""/> <math> \begi\prooftree array \justifies c|c \using \textrm{(W )} | <span id=""/> <math> \begi\prooftree array \justifies c|c \using \textrm{(W)}</math> | ||
Ustalić, jaką minimalną rangę kwantyfikatorową ma zdanie math>\var\varphi</math> | Ustalić, jaką minimalną rangę kwantyfikatorową ma zdanie math>\var\varphi</math> | ||
takie, że <math>\mathfrak A\models\var\varphi</math> i | takie, że <math>\mathfrak A\models\var\varphi</math> i <math>\mathfrak B\not\models\var\varphi.</math>}} | ||
Wersja z 07:48, 26 wrz 2006
Linek z wykładu 8 do cwiczenia 4. Nazwa linku: "c"
Ćwiczenie 1
Wykazać, że dla dostatecznie dużych istnieje zdanie o randze kwantyfikatorowej definiujące porządek liniowy o mocy
Ćwiczenie 2
Adaptując dowód Faktu #qqudowodnić, że struktury Parser nie mógł rozpoznać (błąd składni): {\displaystyle \<\{1-1/n | n=1,2,\dots\},\leq\>} oraz Parser nie mógł rozpoznać (błąd składni): {\displaystyle \<\bigcup_{n=1}^\infty\{1-1/n,1+1/n,3-1/n\},\leq\>} , gdzie jest w obu wypadkach standardowym porządkiem liczb wymiernych, są elementarnie równoważne.
Wywnioskować stąd, że pojęcie dobrego porządku nie jest wyrażalne w logice pierwszego rzędu. (Zupełnie inny dowód tego faktu poznamy w Rozdziale 8.Ćwiczenie 3
Ćwiczenie 4
Ćwiczenie 5
Ćwiczenie 6
Ćwiczenie 7
Dane są dwie struktury relacyjne i nad sygnaturą złożoną z jednego dwuargumentowego symbolu relacyjnego. Ich nośnikiem jest , relacja zachodzi wtedy i tylko wtedy, gdy , a relacja \wtw, gdy
Ustalić, jaką minimalną rangę kwantyfikatorową ma zdanie Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \var\varphi} takie, że Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \mathfrak A\models\var\varphi} i Parser nie mógł rozpoznać (nieznana funkcja „\var”): {\displaystyle \mathfrak B\not\models\var\varphi.}Ćwiczenie 8