Algebra liniowa z geometrią analityczną/Test 2: Przestrzenie wektorowe: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 1: | Linia 1: | ||
<quiz> | <quiz> | ||
W zbiorze <math>\displaystyle \mathbb{R}^2 </math> | W zbiorze <math>\displaystyle \mathbb{R}^2 </math> określamy następujące działania: | ||
<br> <math>\displaystyle \boxplus : \mathbb{R}^2 \times \mathbb{R}^2 \ni \left( (x_1,x_2),(y_1,y_2) | <br> <math>\displaystyle \boxplus : \mathbb{R}^2 \times \mathbb{R}^2 \ni \left( (x_1,x_2),(y_1,y_2) \right)\to (x_1+y_1,x_2 +y_2) \in \mathbb{R}^2 </math>,\ | ||
\right)\to | <br> <math>\displaystyle \odot : \mathbb{R} \times \mathbb{R}^2 \ni (\alpha,(x_1,x_2) ) \to (\alpha x_1,x_2) \in \mathbb{R}^2 </math>. | ||
<br> <math>\displaystyle \odot : \mathbb{R} \times \mathbb{R}^2 \ni (\alpha,(x_1,x_2) ) \to (\alpha | |||
x_1,x_2) | |||
<wrongoption><math>\displaystyle \forall (x_1,x_2) \in \mathbb{R}^2 \ \ 2 \odot (x_1,x_2) = (x_1,x_2)\boxplus (x_1,x_2)</math>.</wrongoption> | <wrongoption><math>\displaystyle \forall (x_1,x_2) \in \mathbb{R}^2 \ \ 2 \odot (x_1,x_2) = (x_1,x_2)\boxplus (x_1,x_2)</math>.</wrongoption> |
Wersja z 10:51, 21 wrz 2006
W zbiorze określamy następujące działania:
,\
.
.
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \forall \alpha, \ \beta \in \mathbb{R} \ \forall (x_1,x_2) \in \mathbb{R}^2 \ \ (\alpha \beta)\odot (x_1,x_2) = (\alpha \odot (\beta \odot (x_1,x_2)))} .
.
Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle \forall \alpha, \ \beta \in \mathbb{R} \forall (x_1,x_2) \in \mathbb{R}^2 \\ (\alpha +\beta)\odot (x_1,x_2) = \alpha \odot (x_1,x_2) \boxplus \beta \odot (x_1,x_2) } .
Niech i niech .
jest podprzestrzenią wektorową przestrzeni .
.
.
.
Niech i niech .
.
.
.
.
Niech .
.
.
.
.
Niech Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle U = \{ (x_1,x_2, x_3) \in \mathbb{R}^3 \ : \ x_1 =0\}, \ W = \{ (x_1,x_2, x_3) \in \mathbb{R}^3 \ : \ x_2 +x_3 =0 \}, Z = \{(t,-t,t) \ : \ t \in \mathbb{R} \}}
.
.
.
jest podprzestrzenią wektorową przestrzeni .
jest podprzestrzenią wektorową przestrzeni .
Niech Parser nie mógł rozpoznać (błąd składni): {\displaystyle \displaystyle V = \mathbb{R}^{\mathbb{R}}, \ U = \{ f \in \mathbb{R}^{\mathbb{R}} \ : \ \forall x \in \mathbb{R} \ f(x) = f(-x)\}, \ W = \{ f \in \mathbb{R}^{\mathbb{R}} \ : \ \forall x~\in \mathbb{R} \ f(x) = -f(-x)\},\ \ Q = \{ f \in \mathbb{R}^{\mathbb{R}} \ : \ f\}
jest wielomianem stopnia parzystego .
jest podprzestrzenią wektorową przestrzeni .
jest podprzestrzenią wektorową przestrzeni .
jest podprzestrzenią wektorową przestrzeni .
.