Analiza matematyczna 2/Ćwiczenia 8: Ekstrema funkcji wielu zmiennych: Różnice pomiędzy wersjami

Z Studia Informatyczne
Przejdź do nawigacjiPrzejdź do wyszukiwania
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Gracja (dyskusja | edycje)
Nie podano opisu zmian
Linia 451: Linia 451:
</div></div>
</div></div>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   [[##z.am2.07.060|Uzupelnic z.am2.07.060|]] a) Warunek konieczny istnienia ekstremum
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">
a) Warunek konieczny istnienia ekstremum
sprowadza się do układu
sprowadza się do układu
<center><math>\displaystyle  
<center><math>\displaystyle  
Linia 518: Linia 519:
</div></div>
</div></div>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   [[##z.am2.07.080|Uzupelnic z.am2.07.080|]] a)  Zakładamy, że <math>\displaystyle x,y,z\neq 0</math>.
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">
Otrzymany z warunku koniecznego układ równań
a)  Zakładamy, że <math>\displaystyle x,y,z\neq 0</math>. Otrzymany z warunku koniecznego układ równań
<center><math>\displaystyle  
<center><math>\displaystyle  
\left\{\begin{array} {l}
\left\{\begin{array} {l}
Linia 600: Linia 601:
</div></div>
</div></div>


<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">   [[##z.am2.07.090|Uzupelnic z.am2.07.090|]] Zauważmy, że <math>\displaystyle f</math> jest dobrze zdefiniowaną
<div class="mw-collapsible mw-made=collapsible mw-collapsed"><span class="mw-collapsible-toogle mw-collapsible-toogle-default style="font-variant:small-caps">Rozwiązanie </span><div class="mw-collapsible-content" style="display:none">
funkcją <math>\displaystyle n</math> zmiennych dodatnich. Jeśli przyjmiemy oznaczenia
Zauważmy, że <math>\displaystyle f</math> jest dobrze zdefiniowaną funkcją <math>\displaystyle n</math> zmiennych dodatnich. Jeśli przyjmiemy oznaczenia  
<center><math>\displaystyle  
<center><math>\displaystyle  
x'=(x_2,...,x_n)\quad  {\rm i} \quad p(x')= (x_2+x_3)...(x_{n-1}+x_n)(x_n+b),
x'=(x_2,...,x_n)\quad  {\rm i} \quad p(x')= (x_2+x_3)...(x_{n-1}+x_n)(x_n+b),

Wersja z 17:40, 4 wrz 2006

Ekstrema funkcji wielu zmiennych. Ćwiczenia

Ćwiczenie 8.1.

a) Wyznaczyć wielomian Taylora rzędu drugiego funkcji f(x,y)=cosxcosy w punkcie (0,0).

b) Wyznaczyć wielomian Taylora rzędu drugiego funkcji f(x,y)=arctg(xyx+y) w punkcie (1,1).

c) Wyznaczyć wielomian Taylora rzędu drugiego funkcji f(x,y)=xyx2+y2 w punkcie (1,1).

d) Rozwinąć w szereg Taylora funkcję f(x,y,z)=x3+y3+z33xyz w punkcie (1,1,1).

Wskazówka
Rozwiązanie

Ćwiczenie 8.2.

Wyznaczyć ekstrema lokalne funkcji

a) f(x,y)=x4+y48x22y2+2006,

b) g(x,y)=x2+8y36xy+1,

c) h(x,y)=2xy+1x+2y.
Wskazówka
Rozwiązanie

Ćwiczenie 8.3.

Wyznaczyć ekstrema lokalne funkcji

a) f(x,y)=e2x(x+y2+2y),

b) g(x,y)=ex2y(52x+y),

c) h(x,y)=ln|x+y|x2y2,

d) ϕ(x,y)=x2y+lnx2+y2+3arctgyx.

Wskazówka
Rozwiązanie

Ćwiczenie 8.4.

Wyznaczyć ekstrema lokalne funkcji

a) f(x,y)=sinxsinysin(x+y),

b) h(x,y)=sinx+cosy+cos(xy)
w zbiorze (0,π)2.

Wskazówka

Ćwiczenie 8.5.

Wyznaczyć ekstrema lokalne funkcji

a) f(x,y)=1x2+y2,

b) g(x,y)=x4+y45,

c) h(x,y)=x5+y5.
Czy otrzymane ekstrema są też globalne?

Wskazówka
Rozwiązanie

Ćwiczenie 8.6.

a) Pokazać, że funkcja f(x,y)=(1+ex)cosy+xex ma nieskończenie wiele minimów, natomiast nie ma żadnego maksimum.

b) Pokazać, że funkcja f(x,y)=3x44x2y+y2 nie ma minimum w punkcie (0,0), ale jej zacieśnienie do dowolnej prostej przechodzącej przez początek układu współrzędnych ma silne minimum w tym punkcie.

Wskazówka

Ćwiczenie 8.7.

Wyznaczyć ekstrema lokalne funkcji

a) f(x,y,z)=x4y3+2z32x2+6y23z2,

b) g(x,y,z)=x3+xy+y22zx+2z2+3y1,

c) h(x,y,z)=xyz(4xyz).

Wskazówka
Rozwiązanie

Ćwiczenie 8.8.

a) Wyznaczyć ekstrema lokalne funkcji

f(x,y,z)=4x2yxz2y1z.

b) Wyznaczyć ekstrema lokalne funkcji

Φ(x,y,z)=sin(x+y+z)sinxsinysinz

w zbiorze

(0,π)2.
Wskazówka
Rozwiązanie

Ćwiczenie 8.9.

(Zadanie Huygensa) Pomiędzy liczby dodatnie a i b (ab) wstawić liczby dodatnie x1,...,xn tak, aby ułamek

f(x1,...,xn)=x1x2...xn(a+x1)(x1+x2)...(xn1+xn)(xn+b)

miał największą wartość.

Wskazówka
Rozwiązanie