Analiza matematyczna 2/Ćwiczenia 12: Całka krzwoliniowa. Twierdzenie Greena: Różnice pomiędzy wersjami
Nie podano opisu zmian |
Nie podano opisu zmian |
||
Linia 205: | Linia 205: | ||
</div></div> | </div></div> | ||
{{cwiczenie|12.4.|| | {{cwiczenie|12.4.|cw_12_4| | ||
Znaleźć (lub odgadnąć) potencjał dla pola sił z | Znaleźć (lub odgadnąć) potencjał dla pola sił z |
Wersja z 13:34, 4 wrz 2006
Całka krzywoliniowa. Twierdzenie Greena
Ćwiczenie 12.1.
Policzyć
gdzie jest łukiem cykloidy danej parametrycznie:
Ćwiczenie 12.2.
Policzyć
gdzie jest kwadratem o wierzchołkach w obieganym przeciwnie do ruchu wskazówek zegara.
Ćwiczenie 12.3.
W pewnym polu sił składowe pola wynoszą
Policzyć pracę potrzebną do przesunięcia punktu materialnego wzdłuż krzywej łączącej punkt z punktem danej wzorem
Ćwiczenie 12.4.
Znaleźć (lub odgadnąć) potencjał dla pola sił z Zadania Uzupelnic z.new.am2.c.12.030|.
Ćwiczenie 12.5.
Korzystając z twierdzenia Greena policzyć
gdzie jest okręgiem środku w i promieniu
Ćwiczenie 12.6.
Policzyć całkę
gdzie jest wykresem funkcji dla
Ćwiczenie 12.7.
Policzyć całkę krzywoliniową:
gdzie jest parabolą pomiędzy punktami a
Ćwiczenie 12.8.
Za pomocą całki krzywoliniowej skierowanej obliczyć pole ograniczone elipsą
gdzie są dane.
Ćwiczenie 12.9.
Za pomocą całki krzywoliniowej skierowanej obliczyć pole ograniczone asteroidą
gdzie jest dane.